The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium l...The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium lattice constants of TixV1-xC show a nearly linear reduction with increasing addition of V.The elastic properties of TixV1-xC are varied by doping with V.The bulk modulus of Ti0.5V0.5C is larger than that of pure TiC,as well as Ti0.5V0.5C has the largest C44 among TixV1-xC(0≤x≤1),indicating that Ti0.5V0.5C has higher hardness than pure TiC.However,Ti0.5V0.5C presents brittleness based on the analysis of ductile/brittle behavior.The Ti0.5V0.5C carbide has the lowest formation energy,indicating that Ti0.5V0.5C is more stable than all other alloys.展开更多
Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method.The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction,N2 adsorption-desorp...Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method.The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction,N2 adsorption-desorption,H2 temperature-programmed reduction,soot temperatureprogrammed reduction,and X-ray photoelectron spectroscopy.The catalytic activity of the catalysts for soot oxidation was tested by temperature-programmed oxidation in air and in a NOx atmosphere.Metallic Ag particles were the main Ag species.Part of the Ag migrated from the surface to the lattice of the LaCoO3 perovskite,to form La(1-x)AgxCoO3.This increased the amount of oxygen vacancies in the perovskite structure during thermal treatment.Compared with unmodified LaCoO3,the maximum soot oxidation rate temperature(Tp) decreased by 50-70 ℃ in air when LaCoO3 was partially modified by Ag,depending on the thermal treatment temperature.The Tp of the Ag/LaCoO3catalyst calcined at 400℃ in a NOx atmosphere decreased to about 140℃,compared with that of LaCoO3.Ag particles and oxygen vacancies in the catalysts contributed to their high catalytic activity for soot oxidation.The stable catalytic activity of the Ag/LaCoO3 catalyst calcined at 700℃ in a NOx atmosphere was related to its stable structure.展开更多
High-temperature CO_(2)reduction reaction(HT-CO_(2)RR)in solid oxide electrochemical cells(SOECs)features near-unity selectivity,high energy efficiency,and industrial relevant current density for the production of CO,...High-temperature CO_(2)reduction reaction(HT-CO_(2)RR)in solid oxide electrochemical cells(SOECs)features near-unity selectivity,high energy efficiency,and industrial relevant current density for the production of CO,a widely-utilized“building block”in today’s chemical industry.Thus,it offers an intriguing and promising means to radically change the way of chemical manufacturing and achieve carbon neutrality using renewable energy sources,CO_(2),and water.Albeit with the great potential of HT-CO_(2)RR,this carbon utilization approach,unfortunately,has been suffering coke formation that is seriously detrimental to its energy efficiency and operating lifetime.In recent years,much effort has been added to understanding the mechanism of coke formation,managing reaction conditions to mitigate coke formation,and devising coke-formation-free electrode materials.These investigations have substantially advanced the HT-CO_(2)RR toward a practical industrial technology,but the resulting coke formation prevention strategies compromise activity and energy efficiency.Future research may target exploiting the control over both catalyst design and system design to gain selectivity,energy efficiency,and stability synchronously.Therefore,this perspective overviews the progress of research on coke formation in HT-CO_(2)RR,and elaborates on possible future directions that may accelerate its practical implementation at a large scale.展开更多
In the present work, three medium softening point coal tar pitches were used for comparative thermal stability and under-storage stability investigation. Powders of the pitches were found to be different under storage...In the present work, three medium softening point coal tar pitches were used for comparative thermal stability and under-storage stability investigation. Powders of the pitches were found to be different under storage: one of the pitches was caked and slumped after 7-day or longer storage. For thermal stability investigation the soft temperature treatment (265℃) of coal tar pitches was used. Detailed study of initial and treated pitches was carried out. Experimental results demonstrated that LMW-HC (high low-molecular-weight hydrocarbons) and oxygen content influence pitch quality characteristics in a negative way under long-term storage and lead to highest properties change after thermal stability treatment.展开更多
The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This ...The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a“constant wall temperature method”.It is different from a previous widely used method,which is identified as a“constant heat flux method”.It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test. For a fuel temperature of 250℃,it is found that deposition rates increase continuously with increase in tube- wall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650 K)beyond which any further increase in wall temperature causes the rate of deposition to decline. The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.展开更多
Hydrogen, serving as a clean, sustainable energy source, may be mainly produced from electrolysis water. Herein, we report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/ CoS2@Co) servi...Hydrogen, serving as a clean, sustainable energy source, may be mainly produced from electrolysis water. Herein, we report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/ CoS2@Co) serving as a bifunctional catalyst, which exhibits excellent hydrogen evolution reaction perfor-mance (10.0 mAcm^-2 at 0.112 V, and low Tafel slope for 104.9 mV dec^-1 ) and oxygen evolution reaction performance (10.0 mAcm^-2 at 1.57 V, and low Tafel slope for 76.1 mV dec^-1), meanwbile with a strong stability at various current densities. In-depth study reveals that the excellent catalytic properties can be mainly attributed to the increased catalytic sites induced by S, N co-doping, the improved electronic con-ductivity derived from the carbon nanotubes, and Mott-Schottky effect between the metal cobalt and semiconductive cobalt disulfide. Notably, when the bifunctional catalysts are applied to overall water splitting, a low potential of 1.633 V at the current density of 10.0 mAcm^-2 is achieved, which can com-pete with the precious metal catalyst benchmarks in alkaline media, demonstrating its promising prac-ticability in the realistic water splitting application. This work elucidates a practicable way to the design of transition metal and nano-carbon composite catalysts for a broad application in the fields of energy chemistry.展开更多
Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous ...Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations.展开更多
基金Project(Z2006F07)supported by Natural Science Foundation of Shandong Province,China
文摘The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium lattice constants of TixV1-xC show a nearly linear reduction with increasing addition of V.The elastic properties of TixV1-xC are varied by doping with V.The bulk modulus of Ti0.5V0.5C is larger than that of pure TiC,as well as Ti0.5V0.5C has the largest C44 among TixV1-xC(0≤x≤1),indicating that Ti0.5V0.5C has higher hardness than pure TiC.However,Ti0.5V0.5C presents brittleness based on the analysis of ductile/brittle behavior.The Ti0.5V0.5C carbide has the lowest formation energy,indicating that Ti0.5V0.5C is more stable than all other alloys.
文摘Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method.The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction,N2 adsorption-desorption,H2 temperature-programmed reduction,soot temperatureprogrammed reduction,and X-ray photoelectron spectroscopy.The catalytic activity of the catalysts for soot oxidation was tested by temperature-programmed oxidation in air and in a NOx atmosphere.Metallic Ag particles were the main Ag species.Part of the Ag migrated from the surface to the lattice of the LaCoO3 perovskite,to form La(1-x)AgxCoO3.This increased the amount of oxygen vacancies in the perovskite structure during thermal treatment.Compared with unmodified LaCoO3,the maximum soot oxidation rate temperature(Tp) decreased by 50-70 ℃ in air when LaCoO3 was partially modified by Ag,depending on the thermal treatment temperature.The Tp of the Ag/LaCoO3catalyst calcined at 400℃ in a NOx atmosphere decreased to about 140℃,compared with that of LaCoO3.Ag particles and oxygen vacancies in the catalysts contributed to their high catalytic activity for soot oxidation.The stable catalytic activity of the Ag/LaCoO3 catalyst calcined at 700℃ in a NOx atmosphere was related to its stable structure.
文摘High-temperature CO_(2)reduction reaction(HT-CO_(2)RR)in solid oxide electrochemical cells(SOECs)features near-unity selectivity,high energy efficiency,and industrial relevant current density for the production of CO,a widely-utilized“building block”in today’s chemical industry.Thus,it offers an intriguing and promising means to radically change the way of chemical manufacturing and achieve carbon neutrality using renewable energy sources,CO_(2),and water.Albeit with the great potential of HT-CO_(2)RR,this carbon utilization approach,unfortunately,has been suffering coke formation that is seriously detrimental to its energy efficiency and operating lifetime.In recent years,much effort has been added to understanding the mechanism of coke formation,managing reaction conditions to mitigate coke formation,and devising coke-formation-free electrode materials.These investigations have substantially advanced the HT-CO_(2)RR toward a practical industrial technology,but the resulting coke formation prevention strategies compromise activity and energy efficiency.Future research may target exploiting the control over both catalyst design and system design to gain selectivity,energy efficiency,and stability synchronously.Therefore,this perspective overviews the progress of research on coke formation in HT-CO_(2)RR,and elaborates on possible future directions that may accelerate its practical implementation at a large scale.
文摘In the present work, three medium softening point coal tar pitches were used for comparative thermal stability and under-storage stability investigation. Powders of the pitches were found to be different under storage: one of the pitches was caked and slumped after 7-day or longer storage. For thermal stability investigation the soft temperature treatment (265℃) of coal tar pitches was used. Detailed study of initial and treated pitches was carried out. Experimental results demonstrated that LMW-HC (high low-molecular-weight hydrocarbons) and oxygen content influence pitch quality characteristics in a negative way under long-term storage and lead to highest properties change after thermal stability treatment.
文摘The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a“constant wall temperature method”.It is different from a previous widely used method,which is identified as a“constant heat flux method”.It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test. For a fuel temperature of 250℃,it is found that deposition rates increase continuously with increase in tube- wall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650 K)beyond which any further increase in wall temperature causes the rate of deposition to decline. The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.
基金financially supported by the National Natural Science Foundation of China(21576056 and 21576057)Guangdong Natural Science Foundation(2017A030311016)+4 种基金Major Scientific Project of Guangdong University(2017KZDXM059)Science and Technology Research Project of Guangdong Province(2016A010103043)Science and Technology Research Project of Guangzhou(201607010232)Guangzhou University’s 2017 Training Program for Young Top-Notch Personnel(BJ201704)Australian Research Council(ARC)through Discovery Early Career Researcher Award(DE150101306)and Linkage Project(LP160100927)
文摘Hydrogen, serving as a clean, sustainable energy source, may be mainly produced from electrolysis water. Herein, we report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/ CoS2@Co) serving as a bifunctional catalyst, which exhibits excellent hydrogen evolution reaction perfor-mance (10.0 mAcm^-2 at 0.112 V, and low Tafel slope for 104.9 mV dec^-1 ) and oxygen evolution reaction performance (10.0 mAcm^-2 at 1.57 V, and low Tafel slope for 76.1 mV dec^-1), meanwbile with a strong stability at various current densities. In-depth study reveals that the excellent catalytic properties can be mainly attributed to the increased catalytic sites induced by S, N co-doping, the improved electronic con-ductivity derived from the carbon nanotubes, and Mott-Schottky effect between the metal cobalt and semiconductive cobalt disulfide. Notably, when the bifunctional catalysts are applied to overall water splitting, a low potential of 1.633 V at the current density of 10.0 mAcm^-2 is achieved, which can com-pete with the precious metal catalyst benchmarks in alkaline media, demonstrating its promising prac-ticability in the realistic water splitting application. This work elucidates a practicable way to the design of transition metal and nano-carbon composite catalysts for a broad application in the fields of energy chemistry.
基金supported by grants(20292081)from the Ministry of Education,Culture,Sports,Science and Technology,Japan.
文摘Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations.