This paper describes the preparation and evaluation of a micro-sphere catalytic complex for the hydrogen production in a Reactive Sorption Enhanced Reforming (ReSER) process. The catalytic complex made by a spray te...This paper describes the preparation and evaluation of a micro-sphere catalytic complex for the hydrogen production in a Reactive Sorption Enhanced Reforming (ReSER) process. The catalytic complex made by a spray technique has a dual function containing Ni as a catalytic material and CaO as an adsorption material used in the ReSER process. The attrition characteristics of the catalytic complex are acceptable for the commercial used. The nano GaCO3 material used as a precursor of CaO showed a desirable durability with a CO2 sorption capacity of 0.6 mol CO2/kg after 10 repeating cycles under the carbonation temperature of 600 ℃, a CO2 partial pressure of 0.02 MPa, and a calcination temperature of 750 ℃ in N2 measured by a thermal gravimetric analyzer. The testing of the catalytic complex for ReSER showed a hydrogen yield of over 95 % (v/v) in the laboratory fixed fluidized bed reactor. The catalytic system has an attractive prospect in the ReSER process for hydrogen production, especially in the fluidized mode where reactor and regenerator combined in a cycling process.展开更多
Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosi...Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples.展开更多
Photocatalytic conversion of“greenhouse gas”CO2is considered to be one of the most effective ways to alleviate current energy and environmental problems without additional energy consumption and pollutant emission.T...Photocatalytic conversion of“greenhouse gas”CO2is considered to be one of the most effective ways to alleviate current energy and environmental problems without additional energy consumption and pollutant emission.The performance of many traditional semiconductor photocatalysts is not efficient enough to satisfy the requirements of practical applications because of their limited specific surface area and low CO2adsorption capacity.Therefore,the exploration of photocatalysts with high CO2uptake is significant in the field of CO2conversion.Recently the porous materials appeared to be a kind of superior candidate for enriching the CO2molecules on the surface of photocatalysts for catalytic conversion.This paper first summarizes the advances in the development of nanoporous adsorbents for CO2capture.Three main classes of porous materials are considered:inorganic porous materials,metal organic frameworks,and microporous organic polymers.Based on systematic research on CO2uptake,we then highlight the recent progress in these porous‐material‐based photocatalysts for CO2conversion.Benefiting from the improved CO2uptake capacity,the porous‐material‐based photocatalysts exhibited remarkably enhanced efficiency in the reduction of CO2to chemical fuels,such as CO,CH4,and CH3OH.Based on reported recent achievements,we predict a trend of development in multifunctional materials with both high adsorption capability and photocatalytic performance for CO2utilization.展开更多
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (A...TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.展开更多
基金supports from Sinopec of China and from National Science Foundation of China (NSFC) under contracts No.20676119supports from Sinopec of China and from National Science Foundation of China (NSFC) under contracts No. 20876142 respectively
文摘This paper describes the preparation and evaluation of a micro-sphere catalytic complex for the hydrogen production in a Reactive Sorption Enhanced Reforming (ReSER) process. The catalytic complex made by a spray technique has a dual function containing Ni as a catalytic material and CaO as an adsorption material used in the ReSER process. The attrition characteristics of the catalytic complex are acceptable for the commercial used. The nano GaCO3 material used as a precursor of CaO showed a desirable durability with a CO2 sorption capacity of 0.6 mol CO2/kg after 10 repeating cycles under the carbonation temperature of 600 ℃, a CO2 partial pressure of 0.02 MPa, and a calcination temperature of 750 ℃ in N2 measured by a thermal gravimetric analyzer. The testing of the catalytic complex for ReSER showed a hydrogen yield of over 95 % (v/v) in the laboratory fixed fluidized bed reactor. The catalytic system has an attractive prospect in the ReSER process for hydrogen production, especially in the fluidized mode where reactor and regenerator combined in a cycling process.
基金Supported by the National Sci-Tech Support Plan(2015BAD21B05)China Scholarship Council(201408320127)
文摘Amorphous carbon materials play a vital role in adsorbed natural gas(ANG) storage. One of the key issues in the more prevalent use of ANG is the limited adsorption capacity, which is primarily determined by the porosity and surface characteristics of porous materials. To identify suitable adsorbents, we need a reliable computational tool for pore characterization and, subsequently, quantitative prediction of the adsorption behavior. Within the framework of adsorption integral equation(AIE), the pore-size distribution(PSD) is sensitive to the adopted theoretical models and numerical algorithms through isotherm fitting. In recent years, the classical density functional theory(DFT) has emerged as a common choice to describe adsorption isotherms for AIE kernel construction. However,rarely considered is the accuracy of the mean-field approximation(MFA) commonly used in commercial software. In this work, we calibrate four versions of DFT methods with grand canonical Monte Carlo(GCMC) molecular simulation for the adsorption of CH_4 and CO_2 gas in slit pores at 298 K with the pore width varying from 0.65 to 5.00 nm and pressure from 0.2 to 2.0 MPa. It is found that a weighted-density approximation proposed by Yu(WDA-Yu) is more accurate than MFA and other non-local DFT methods. In combination with the trapezoid discretization of AIE, the WDA-Yu method provides a faithful representation of experimental data, with the accuracy and stability improved by 90.0% and 91.2%, respectively, in comparison with the corresponding results from MFA for fitting CO_2 isotherms. In particular, those distributions in the feature pore width range(FPWR)are proved more representative for the pore-size analysis. The new theoretical procedure for pore characterization has also been tested with the methane adsorption capacity in seven activated carbon samples.
基金supported by the National Natural Science Foundation of China(21771070,21571071)~~
文摘Photocatalytic conversion of“greenhouse gas”CO2is considered to be one of the most effective ways to alleviate current energy and environmental problems without additional energy consumption and pollutant emission.The performance of many traditional semiconductor photocatalysts is not efficient enough to satisfy the requirements of practical applications because of their limited specific surface area and low CO2adsorption capacity.Therefore,the exploration of photocatalysts with high CO2uptake is significant in the field of CO2conversion.Recently the porous materials appeared to be a kind of superior candidate for enriching the CO2molecules on the surface of photocatalysts for catalytic conversion.This paper first summarizes the advances in the development of nanoporous adsorbents for CO2capture.Three main classes of porous materials are considered:inorganic porous materials,metal organic frameworks,and microporous organic polymers.Based on systematic research on CO2uptake,we then highlight the recent progress in these porous‐material‐based photocatalysts for CO2conversion.Benefiting from the improved CO2uptake capacity,the porous‐material‐based photocatalysts exhibited remarkably enhanced efficiency in the reduction of CO2to chemical fuels,such as CO,CH4,and CH3OH.Based on reported recent achievements,we predict a trend of development in multifunctional materials with both high adsorption capability and photocatalytic performance for CO2utilization.
基金Project (No. 20477006) supported by the National Natural ScienceFoundation of China
文摘TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.