Is there the inner circle layer of carbon in the Earth?Does the outer circle layer of carbon come from the inner circle layer of carbon?Can the microstructures of carbon derived from organism trace vestiges of life?Ar...Is there the inner circle layer of carbon in the Earth?Does the outer circle layer of carbon come from the inner circle layer of carbon?Can the microstructures of carbon derived from organism trace vestiges of life?Are carbon materials"all embracing material"?and how to enhance qualities of diamond?展开更多
The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,...The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.展开更多
Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ...Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.展开更多
The influence of Zr and Y on the cast microstructure of a nickel-based superalloy was investigated by optical microscopy (OM),scanning electron microscopy(SEM),electron probe micro-analysis(EPMA)and X-ray diffra...The influence of Zr and Y on the cast microstructure of a nickel-based superalloy was investigated by optical microscopy (OM),scanning electron microscopy(SEM),electron probe micro-analysis(EPMA)and X-ray diffraction(XRD).Theγ+γ′eutectic volume in the superalloy rises notably with the increase of Zr or Y content.Meanwhile,the morphologies of primary MC carbides change from needle and platelet-like to blocky shape with increasing Zr and Y doped.The XRD results show that the primary MC carbide lattice constant increases with Zr and Y additions,and EPMA investigation shows that the platelet-like MC carbides contain primarily Nb and C,while those carbides in blocky shape have 39.2%Zr and 39.6%Nb in average,.These influences on the cast microstructure can be attributed to the atomic size effects of Zr and Y.展开更多
Vanadium carbide/titanium carbide (VC/TiC) superlattice films were synthesized by magnetron sputtering method. The effects of modulation period on the microstructure evolution and mechanical properties were investig...Vanadium carbide/titanium carbide (VC/TiC) superlattice films were synthesized by magnetron sputtering method. The effects of modulation period on the microstructure evolution and mechanical properties were investigated by EDXA, XRD, HRTEM and nano-indentation. The results reveal that the VC/TiC superlattice films form an epitaxial structure when their modulation period is less than a critical value, accompanied with a remarkable increase in hardness. Further increasing the modulation period, the hardness of superlattices decreases slowly to the rule-of-mixture value due to the destruction of epitaxial structures. The XRD results reveal that three-directional strains are generated in superlattices when the epitaxial structure is formed, which may change the modulus of constituent layers. This may explain the remarkable hardness enhancement of VC/TiC superlattices.展开更多
Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly poro...Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.展开更多
In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and...In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and metal magnetic memory signals of specimens were measured during the test process. The influencing factors of metal magnetic memory signals and the relationship between axial applied load and signals were analyzed. The fracture and microstructure of the specimens were observed. The results show that the magnetic signals corresponding to the measured points change linearly approximately with increasing axial load. The microstructure of Q235 steel is ferrite and perlite, whereas that of 18CrNiWA steel is bainite and low-carbon martensite. The fracture of these two kinds of specimens is ductile rupture; carbon content of specimen materials and dislocation glide give much contribution to the characteristics of magnetic curves.展开更多
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resu...Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’.展开更多
Apparent differences in sedimentation and diagenesis exist between carbonate reservoirs in different areas and affect their petrophysical and elastic properties.To elucidate the relevant mechanism,we study and analyze...Apparent differences in sedimentation and diagenesis exist between carbonate reservoirs in different areas and affect their petrophysical and elastic properties.To elucidate the relevant mechanism,we study and analyze the characteristics of rock microstructure and elastic properties of carbonates and their variation regularity using 89 carbonate samples from the different areas The results show that the overall variation regularities of the physical and elastic properties of the carbonate rocks are controlled by the microtextures of the microcrystalline calcite,whereas the traditional classification of rock-and pore-structures is no longer applicable.The micrite microtextures can be divided,with respect to their morphological features,into porous micrite,compact micrite,and tight micrite.As the micrites evolves from the first to the last type,crystal boundaries are observed with increasingly close coalescence,the micritic intercrystalline porosity and pore-throat radius gradually decrease;meanwhile,the rigidity of the calcite microcrystalline particle boundary and elastic homogeneity are enhanced.As a result,the seismic elastic characteristics,such as permeability and velocity of samples,show a general trend of decreasing with the increase of porosity.For low-porosity rock samples(φ<5%)dominated by tight micrite,the micritic pores have limited contributions to porosity and permeability and the micrite elastic properties are similar to those of the rock matrix.In such cases,the macroscopic physical and elastic properties are more susceptible to the formation of cracks and dissolution pores,but these features are controlled by the pore structure.The pore aspect ratio can be used as a good indication of pore types.The bulk modulus aspect ratio for dissolution pores is greater than 0.2,whereas that of the intergranular pores ranges from 0.1 to 0.2.The porous and compact micrites are observed to have a bulk modulus aspect ratio less than 0.1,whereas the ratio of the tight micrite approaches 0.2。展开更多
The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal condu...The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity.展开更多
A systematic investigation of the microstructure of CrA1CxN1-x coatings as a function of carbon contents was conducted. Quaternary CrA1CxN1-x coatings were deposited on Si wafers by a hybrid coating system combining a...A systematic investigation of the microstructure of CrA1CxN1-x coatings as a function of carbon contents was conducted. Quaternary CrA1CxN1-x coatings were deposited on Si wafers by a hybrid coating system combining an arc-ion plating technique and a DC reactive magnetron sputtering technique using Cr and AI targets in the Ar/N2/CH4 gaseous mixture. The effect of carbon content on microstructure of CrA1C^N~ x coatings was investigated with instrumental analyses of X-ray diffraction, X-ray photoelectron, and high-resolution transmission electron microscopy. The results show that the carbon content of CrA1CxN1-x coatings linearly increases with increasing CH4/(CH4/N2) gas flow rate ratio. The surface roughness of the CrA1CxN1-x coating layer decreases with the increase of carbon content.展开更多
An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite c...An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.展开更多
AM60B magnesium alloy was refined by MgCO3 and its microstmcturat evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the...AM60B magnesium alloy was refined by MgCO3 and its microstmcturat evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the grain size from 329 pm of the unrefined alloy to 69 μm. A semisolid microstructure with small and spheroidal primary particles can be obtained after being partially remelted. The microstructure evolution can be divided into four steps: the initial rapid coarsening, structure separation, spheroidization and final coarsening. Correspondingly, these four steps result from the phase transformations of β→α, α+β→L and α→L, α→L and two reverse reactions of α→L and L→α, respectively. One spheroidal primary particle in the semisolid microstmcture usually originates one dendrite in the as-cast microstructure. The variation of primary particle size with holding time does not obey the LSW law, Dt^3-Do^3=Kt, after the semisolid system is in its solid-liquid equilibrium state. Longer heating duration makes the primary particles more globular, but it makes their size larger at the same time.展开更多
A simple and effective method of testing ablation behaviors of carbon/carbon composites at high temperature was provided, which used plasma torch as the heater. The ablation resistance of 3D fine weave pierced carbon/...A simple and effective method of testing ablation behaviors of carbon/carbon composites at high temperature was provided, which used plasma torch as the heater. The ablation resistance of 3D fine weave pierced carbon/carbon composites at high temperature was also studied. The results show that temperature of the plasma flame is very high which is much closer to the real work environment of carbon/carbon composites. The factors that affect the ablation characters of carbon/carbon composites depend on both the properties of their components and the environmental conditions in which the material is placed. The ablation behaviors of C/C composites change from the center flame region predominantly influenced by sublimation of graphite to the region close to the outer flame influenced mainly by oxidization of graphite. The sublimation ability of carbon matrix is equal to that of carbon fibers but the oxidization ability of carbon fibers is significantly enhanced compared to that of carbon matrix.展开更多
The work in this study is focused on the investigation of the structure and properties of ductile cast iron with nanoparticle additives: TiN (titanium nitride), TiN + TiCN (titanium carbonitride) and cBN (cubic...The work in this study is focused on the investigation of the structure and properties of ductile cast iron with nanoparticle additives: TiN (titanium nitride), TiN + TiCN (titanium carbonitride) and cBN (cubic boron nitride). The nanoparticles are coated with nickel prior to addition to the iron melt to improve their wetting and uniform distribution in the volume of the casting. The metallographic observation and wear test are performed to study the influence of the nanoparticle additives on the microstructure and and cast iron tribological properties.展开更多
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of...The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.展开更多
Based on gradient control of carbon partitioning between martensite and austenite during heat treatment of steels,a stepping-quenching-partitioning(S-Q-P) process is developed for high strength steels.The S-Q-P proces...Based on gradient control of carbon partitioning between martensite and austenite during heat treatment of steels,a stepping-quenching-partitioning(S-Q-P) process is developed for high strength steels.The S-Q-P process involves several quenching processes at progressively lower temperatures between martensite-start(Ms) and martensite-finish(Mf) temperatures,each followed by a partitioning treatment at either the initial quenching temperature or above that temperature.A novel microstructure is designed based on the S-Q-P process.Sizes and distributions of retained austenite and high-carbon martensite surrounded by martensite laths can be manipulated by the partitioning duration and temperature,and quenching temperature of the S-Q-P process.Alloying element Si is employed in the S-Q-P steel to suppress formation of carbides and create suitable amount of retained austenite.A steel of 0.39C-1.22Mn-1.12Si-0.23Cr(wt.%) treated by the S-Q-P process is endowed with some special microstructural characteristics:some strips of retained austenite located at edges of martensite blocks with high density of dislocations and between martensite laths,some small blocks of twinned martensites distributed among bundles of the low-carbon martensite lath.The mechanical properties of the medium carbon steel after the S-Q-P process can reach ultimate tensile strength(Rm) of 1240 MPa,total elongation(EI) of 25%,and product of strength and ductility(PSD) of 31.2 GPa% that are much more improved than those after the conventional quenching-tempering(Q-T) and currently prevailing quenching-partitioning(Q-P) treatments.The PSD of the tested steel after the S-Q-P process increases by 67% and 32% as compared with those after the Q-T and Q-P processes,respectively.展开更多
Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandga...Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a template- free acetic acid induced method for the synthesis of visible- light responsive carbon-doped TiO2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of TiO2 (1.84 eV) substantially. Moreover, the resultant microplate photo- catalysts exhibit excellent photocatalytic efficiency and solid-liquid separation performance, which will be bene- ficial for future industrial applications.展开更多
文摘Is there the inner circle layer of carbon in the Earth?Does the outer circle layer of carbon come from the inner circle layer of carbon?Can the microstructures of carbon derived from organism trace vestiges of life?Are carbon materials"all embracing material"?and how to enhance qualities of diamond?
基金supported by the National Natural Science Foundation of China(21276041)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province(2015020200)the Fundamental Research Funds for the Central Universities(DUT15LK41)~~
文摘The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.
基金Project (50905178) supported by the National Natural Science Foundation of ChinaProject (2011CB706603) supported by the National Basic Research Program of China
文摘Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The influence of Zr and Y on the cast microstructure of a nickel-based superalloy was investigated by optical microscopy (OM),scanning electron microscopy(SEM),electron probe micro-analysis(EPMA)and X-ray diffraction(XRD).Theγ+γ′eutectic volume in the superalloy rises notably with the increase of Zr or Y content.Meanwhile,the morphologies of primary MC carbides change from needle and platelet-like to blocky shape with increasing Zr and Y doped.The XRD results show that the primary MC carbide lattice constant increases with Zr and Y additions,and EPMA investigation shows that the platelet-like MC carbides contain primarily Nb and C,while those carbides in blocky shape have 39.2%Zr and 39.6%Nb in average,.These influences on the cast microstructure can be attributed to the atomic size effects of Zr and Y.
基金Project(51201187)supported by the National Natural Science Foundation of China
文摘Vanadium carbide/titanium carbide (VC/TiC) superlattice films were synthesized by magnetron sputtering method. The effects of modulation period on the microstructure evolution and mechanical properties were investigated by EDXA, XRD, HRTEM and nano-indentation. The results reveal that the VC/TiC superlattice films form an epitaxial structure when their modulation period is less than a critical value, accompanied with a remarkable increase in hardness. Further increasing the modulation period, the hardness of superlattices decreases slowly to the rule-of-mixture value due to the destruction of epitaxial structures. The XRD results reveal that three-directional strains are generated in superlattices when the epitaxial structure is formed, which may change the modulus of constituent layers. This may explain the remarkable hardness enhancement of VC/TiC superlattices.
基金supported by the National Natural Science Foundation of China(51568049,51208248,51468043,21366024)the National Science Fund for Excellent Young Scholars(51422807)+1 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20114BAB213015)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515,GJJ12456)~~
文摘Porous g-C_3N_4 and supported porous g-C_3N_4 were fabricated for the first time by a simple strategy using pretreated melamine as a raw material and pretreated quartz rod as a substrate.The formation of a richly porous microstructure can be attributed to the co-existence of different pore-fabricating units in the preparation system for porous g-C_3N_4.The richly porous microstructure endowed the as-prepared porous g-C_3N_4 with an excellent photocatalytic activity.The as-prepared supported porous g-C_3N_4 exhibited considerable stability because of the existence of chemical interaction between porous g-C_3N_4 and the quartz rod substrate.The photocatalytic activity of the supported porous g-C_3N_4 was competitive with that of porous g-C_3N_4 in powder form because neither the surface migration of photogenerated electrons nor the diffusion of the target organic pollutant were affected by the construction of the quartz rod reactor.The photocatalytic activity of the as-prepared porous g-C_3N_4 and supported porous g-C_3N_4 was preliminarily evaluated by the treatment of single-component organic wastewater under visible-light irradiation.Subsequently,the as-prepared porous g-C_3N_4 was further applied in conventional hydrogen evolution and a new system for simultaneous hydrogen evolution with organic-pollutant degradation.The hydrogen yield and degradation efficiency both increased with increasing photocatalytic activity of the as-prepared materials in the system for simultaneous hydrogen evolution with organic-pollutant degradation.
基金Projects(50235030, 50505052) supported by the National Natural Science Foundation of China
文摘In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and metal magnetic memory signals of specimens were measured during the test process. The influencing factors of metal magnetic memory signals and the relationship between axial applied load and signals were analyzed. The fracture and microstructure of the specimens were observed. The results show that the magnetic signals corresponding to the measured points change linearly approximately with increasing axial load. The microstructure of Q235 steel is ferrite and perlite, whereas that of 18CrNiWA steel is bainite and low-carbon martensite. The fracture of these two kinds of specimens is ductile rupture; carbon content of specimen materials and dislocation glide give much contribution to the characteristics of magnetic curves.
基金Project (No. 2004C31044) supported by the Science & TechniqueProject of Zhejiang Province, China
文摘Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’.
基金supported by the National Natural Science Foundation of China(Nos.41774136 and 41374135)the Sichuan Science and Technology Program(No.2016ZX05004-003)
文摘Apparent differences in sedimentation and diagenesis exist between carbonate reservoirs in different areas and affect their petrophysical and elastic properties.To elucidate the relevant mechanism,we study and analyze the characteristics of rock microstructure and elastic properties of carbonates and their variation regularity using 89 carbonate samples from the different areas The results show that the overall variation regularities of the physical and elastic properties of the carbonate rocks are controlled by the microtextures of the microcrystalline calcite,whereas the traditional classification of rock-and pore-structures is no longer applicable.The micrite microtextures can be divided,with respect to their morphological features,into porous micrite,compact micrite,and tight micrite.As the micrites evolves from the first to the last type,crystal boundaries are observed with increasingly close coalescence,the micritic intercrystalline porosity and pore-throat radius gradually decrease;meanwhile,the rigidity of the calcite microcrystalline particle boundary and elastic homogeneity are enhanced.As a result,the seismic elastic characteristics,such as permeability and velocity of samples,show a general trend of decreasing with the increase of porosity.For low-porosity rock samples(φ<5%)dominated by tight micrite,the micritic pores have limited contributions to porosity and permeability and the micrite elastic properties are similar to those of the rock matrix.In such cases,the macroscopic physical and elastic properties are more susceptible to the formation of cracks and dissolution pores,but these features are controlled by the pore structure.The pore aspect ratio can be used as a good indication of pore types.The bulk modulus aspect ratio for dissolution pores is greater than 0.2,whereas that of the intergranular pores ranges from 0.1 to 0.2.The porous and compact micrites are observed to have a bulk modulus aspect ratio less than 0.1,whereas the ratio of the tight micrite approaches 0.2。
基金Project(201012200233)supported by the Freedom Explore Program of Central South University,China
文摘The microstructure and surface state of three kinds of polyacrylonitrile-based carbon fibers (T700, T300 and M40) before and after high temperature treatment were investigated. Also, the pyrocarbon and thermal conductivity of carbon/carbon composites with different carbon fibers as preform were studied. The results show that M40 carbon fiber has the largest crystallite size and the least d002, T300 follows, and TT00 the third. With the increase of heat treatment temperature, the surface state and crystal size of carbon fibers change correspondingly. M40 carbon fiber exhibits the best graphitization property, followed by T300 and then T700. The different microstructure and surface state of different carbon fibers lead to the different microstructures of pyrocarbon and then result in the different thermal conductivities of carbon/carbon composites. The carbon/carbon composite with M40 as preform has the best microstructure in pyrocarbon and the highest thermal conductivity.
基金Project supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, KoreaProject (2010-0001-226) supported by NCRC(National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘A systematic investigation of the microstructure of CrA1CxN1-x coatings as a function of carbon contents was conducted. Quaternary CrA1CxN1-x coatings were deposited on Si wafers by a hybrid coating system combining an arc-ion plating technique and a DC reactive magnetron sputtering technique using Cr and AI targets in the Ar/N2/CH4 gaseous mixture. The effect of carbon content on microstructure of CrA1C^N~ x coatings was investigated with instrumental analyses of X-ray diffraction, X-ray photoelectron, and high-resolution transmission electron microscopy. The results show that the carbon content of CrA1CxN1-x coatings linearly increases with increasing CH4/(CH4/N2) gas flow rate ratio. The surface roughness of the CrA1CxN1-x coating layer decreases with the increase of carbon content.
文摘An experimental study has been carried out to investigate the influence of heat treatment at 300 ℃,450 ℃,550 ℃,650 ℃ and 800 ℃ on the microstructure and sliding wear behavior of Fe Al/WC intermetallic composite coatings produced by high velocity arc spraying (HVAS) and cored wires. The result shows, the main phases in both as sprayed and heat treated Fe Al/WC composite coatings are iron aluminide intermetallics (Fe 3Al+FeAl) and α as well as a little oxide (Al 2O 3) and carbides (WC, W 2C, Fe 2W 2C and Fe 6W 6C). After heat treated at 450-650 ℃, dispersion strengthening of Fe 2W 2C and Fe 6W 6C will lead to a rise in microhardness of the coatings. The microhardness is likely to be the most important factor which influences the sliding wear behavior of the coatings. Increasing the microhardness through heat treatment will improve the sliding wear resistance of the Fe Al/WC composite coatings.
基金Project(G2007CB613706) supported by the National Basic Research Program of China
文摘AM60B magnesium alloy was refined by MgCO3 and its microstmcturat evolution was investigated during partial remelting. The results indicate that MgCO3 is an effective grain refiner for AM60B alloy and can decrease the grain size from 329 pm of the unrefined alloy to 69 μm. A semisolid microstructure with small and spheroidal primary particles can be obtained after being partially remelted. The microstructure evolution can be divided into four steps: the initial rapid coarsening, structure separation, spheroidization and final coarsening. Correspondingly, these four steps result from the phase transformations of β→α, α+β→L and α→L, α→L and two reverse reactions of α→L and L→α, respectively. One spheroidal primary particle in the semisolid microstmcture usually originates one dendrite in the as-cast microstructure. The variation of primary particle size with holding time does not obey the LSW law, Dt^3-Do^3=Kt, after the semisolid system is in its solid-liquid equilibrium state. Longer heating duration makes the primary particles more globular, but it makes their size larger at the same time.
文摘A simple and effective method of testing ablation behaviors of carbon/carbon composites at high temperature was provided, which used plasma torch as the heater. The ablation resistance of 3D fine weave pierced carbon/carbon composites at high temperature was also studied. The results show that temperature of the plasma flame is very high which is much closer to the real work environment of carbon/carbon composites. The factors that affect the ablation characters of carbon/carbon composites depend on both the properties of their components and the environmental conditions in which the material is placed. The ablation behaviors of C/C composites change from the center flame region predominantly influenced by sublimation of graphite to the region close to the outer flame influenced mainly by oxidization of graphite. The sublimation ability of carbon matrix is equal to that of carbon fibers but the oxidization ability of carbon fibers is significantly enhanced compared to that of carbon matrix.
文摘The work in this study is focused on the investigation of the structure and properties of ductile cast iron with nanoparticle additives: TiN (titanium nitride), TiN + TiCN (titanium carbonitride) and cBN (cubic boron nitride). The nanoparticles are coated with nickel prior to addition to the iron melt to improve their wetting and uniform distribution in the volume of the casting. The metallographic observation and wear test are performed to study the influence of the nanoparticle additives on the microstructure and and cast iron tribological properties.
文摘The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.
基金supported by the National Basic Research Program of China (973 program) (Grant No. 2010CB630805)
文摘Based on gradient control of carbon partitioning between martensite and austenite during heat treatment of steels,a stepping-quenching-partitioning(S-Q-P) process is developed for high strength steels.The S-Q-P process involves several quenching processes at progressively lower temperatures between martensite-start(Ms) and martensite-finish(Mf) temperatures,each followed by a partitioning treatment at either the initial quenching temperature or above that temperature.A novel microstructure is designed based on the S-Q-P process.Sizes and distributions of retained austenite and high-carbon martensite surrounded by martensite laths can be manipulated by the partitioning duration and temperature,and quenching temperature of the S-Q-P process.Alloying element Si is employed in the S-Q-P steel to suppress formation of carbides and create suitable amount of retained austenite.A steel of 0.39C-1.22Mn-1.12Si-0.23Cr(wt.%) treated by the S-Q-P process is endowed with some special microstructural characteristics:some strips of retained austenite located at edges of martensite blocks with high density of dislocations and between martensite laths,some small blocks of twinned martensites distributed among bundles of the low-carbon martensite lath.The mechanical properties of the medium carbon steel after the S-Q-P process can reach ultimate tensile strength(Rm) of 1240 MPa,total elongation(EI) of 25%,and product of strength and ductility(PSD) of 31.2 GPa% that are much more improved than those after the conventional quenching-tempering(Q-T) and currently prevailing quenching-partitioning(Q-P) treatments.The PSD of the tested steel after the S-Q-P process increases by 67% and 32% as compared with those after the Q-T and Q-P processes,respectively.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (20966006), the Natural Science Foun- dation of the Inner Mongolia Autonomous Region (2014MS0218), and the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1603).
文摘Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a template- free acetic acid induced method for the synthesis of visible- light responsive carbon-doped TiO2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of TiO2 (1.84 eV) substantially. Moreover, the resultant microplate photo- catalysts exhibit excellent photocatalytic efficiency and solid-liquid separation performance, which will be bene- ficial for future industrial applications.