In this paper we examine the impacts of carbon tax policy on CO2 mitigation effects and economic growth in China by using a dynamic energy-environment-economy computable general equilibrium (CGE) model. The results ...In this paper we examine the impacts of carbon tax policy on CO2 mitigation effects and economic growth in China by using a dynamic energy-environment-economy computable general equilibrium (CGE) model. The results show that 30, 60, and 90 RMB per ton CO2 of carbon tax rate will lead to a reduction of CO2 emissions by 4.52%, 8.59%, and 12.26%, as well as a decline in the GDP by 0.11%, 0.25%, and 0.39% in 2020, respectively, if carbon tax revenues are collected by the government. Moreover, with energy efficiency improvements the CO2 emission per unit of GDP will equally drop by 34.79%, 37.49%, and 39.92% in 2020, respectively. Negative impacts on sectors and households will be alleviated if carbon tax revenues are returned to these sectors and households.展开更多
This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marg...This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marginal abatement cost of CO2 emissions for sample cities was 967 yuan/ton. In terms of region, CO: marginal abatement cost is significantly higher in China's eastern region than in central and western regions; in terms of provincial-level region, it is the highest in Shanghai and the lowest in Shaanxi in terms of city, it is the highest in Shanghai and the lowest in Zhangjiajie with the ratio between their medians being at 48:1; in terms of time, marginal abatement cost has been always on the rise with significant intercity disparities. There is a U-shaped curve relationship between marginal abatement cost of cities and CO2 emissions per unit of GDP, which is negatively correlated with the share of secondary industry and positively correlated with the level of urbanization.展开更多
China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and deve...China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and development of new and renewable energies,because of the rapid development of economy,it is difficult to change the huge total amount and fast increase of CO2 emission in the near future.China has to confront the tough challenge to address global climate change.China plans to reduce carbon intensity,that is,CO2 emissions per unit GDP,by 40 to 45% by 2020 compared with the 2005 level.It is a strategic option to coordinate domestic sustainable development with coping with global climate change on the basis of China's national circumstances,representing the core content and key measures for transforming development pattern and realizing low-carbon development.To achieve the target,more capital and technology inputs are required for energy conservation and low-carbon development during the twelfth and Thirteenth Five Year Plan period than in the Eleventh Five Year Plan period.In addition,energy conservation achieved by structural adjustment,industrial upgrading and product value-added improvement is also expected to play a greater role.Therefore,China should strengthen technological innovation,make greater efforts to transform the development pattern,take advantage of the synergistic effect of policies and measures while coping with global climate change and building a domestic tow-oriented society.China should also establish an industrial system characterized by low-carbon emission.Then China will ultimately achieve a win-win situation in both domestic sustainable development and coping with global climate change.展开更多
China is playing an increasing role in global climate change mitigation,and local authorities need more city-specifc information on the emissions trends and patterns when designing low-carbon policies.This study provi...China is playing an increasing role in global climate change mitigation,and local authorities need more city-specifc information on the emissions trends and patterns when designing low-carbon policies.This study provides the most comprehensive COemission inventories of 287 Chinese cities from 2001 to2019.The emission inventories are compiled for 47 economic sectors and include energy-related emissions for 17 types of fossil fuels and process-related emissions from cement production.We further investigate the state of the emission peak in each city and reveal hidden driving forces.The results show that38 cities have proactively peaked their emissions for at least fve years and another 21 cities also have emission decline,but passively.The 38 proactively peaked cities achieved emission decline mainly by effciency improvements and structural changes in energy use,while the 21 passively emission declined cities reduced emissions at the cost of economic recession or population loss.We propose that those passively emission declined cities need to face up to the reasons that caused the emission to decline,and fully exploit the opportunities provided by industrial innovation and green investment brought by low-carbon targets to achieve economic recovery and carbon mitigation goals.Proactively peaked cities need to seek strategies to maintain the downward trend in emissions and avoid an emission rebound and thus provide successful models for cities with still growing emissions to achieve an emission peak.展开更多
In this paper,the quadratic polynomial and cubic polynomial functions were applied to analyze the environmental Kuznets curve(EKC)of carbon emissions in Hebei Province.The improved STIRPAT model was also applied to as...In this paper,the quadratic polynomial and cubic polynomial functions were applied to analyze the environmental Kuznets curve(EKC)of carbon emissions in Hebei Province.The improved STIRPAT model was also applied to assess the driving factors and reduction paths for carbon emissions in Hebei Province.The results lead to three main conclusions.Firstly,carbon emissions and economic growth in Hebei Province are in a positive correlation stage which has not formed the EKC curve,and the“decoupling”stage between carbon emissions and economic growth has not arrived yet.Secondly,the industrial structure,per capita GDP,fixed assets investment,population size and urbanization rate account for the highest proportion of carbon emissions.Carbon emissions can be reduced greatly by changing the energy structure,in which the proportion of coal is decreased year by year.Environmental regulation also has an obvious effect on the reduction of carbon emissions.Thirdly,it is suggested that the reduction of carbon emissions in Hebei Province should focus on four tasks:controlling the development of heavy industry,avoiding overcapacity,optimizing the industrial structure and accelerating the development of clean energy.展开更多
基金supported by National Natural Science Foundation of China(No.70941034)"Chinese Environmental Tax" Project of Peking University-Lincoln Institute Center for Urban Development and Land Policy
文摘In this paper we examine the impacts of carbon tax policy on CO2 mitigation effects and economic growth in China by using a dynamic energy-environment-economy computable general equilibrium (CGE) model. The results show that 30, 60, and 90 RMB per ton CO2 of carbon tax rate will lead to a reduction of CO2 emissions by 4.52%, 8.59%, and 12.26%, as well as a decline in the GDP by 0.11%, 0.25%, and 0.39% in 2020, respectively, if carbon tax revenues are collected by the government. Moreover, with energy efficiency improvements the CO2 emission per unit of GDP will equally drop by 34.79%, 37.49%, and 39.92% in 2020, respectively. Negative impacts on sectors and households will be alleviated if carbon tax revenues are returned to these sectors and households.
基金supported by the National Natural Sciences Foundation(Approval No.41201582)Beijing Natural Sciences Foundation(9152011)+1 种基金Mingde Scholars Program of Renmin University of China(Approval No.13XNJ016)Peking University-Lincoln Institute Center for Urban Development and Land Policy
文摘This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marginal abatement cost of CO2 emissions for sample cities was 967 yuan/ton. In terms of region, CO: marginal abatement cost is significantly higher in China's eastern region than in central and western regions; in terms of provincial-level region, it is the highest in Shanghai and the lowest in Shaanxi in terms of city, it is the highest in Shanghai and the lowest in Zhangjiajie with the ratio between their medians being at 48:1; in terms of time, marginal abatement cost has been always on the rise with significant intercity disparities. There is a U-shaped curve relationship between marginal abatement cost of cities and CO2 emissions per unit of GDP, which is negatively correlated with the share of secondary industry and positively correlated with the level of urbanization.
文摘China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and development of new and renewable energies,because of the rapid development of economy,it is difficult to change the huge total amount and fast increase of CO2 emission in the near future.China has to confront the tough challenge to address global climate change.China plans to reduce carbon intensity,that is,CO2 emissions per unit GDP,by 40 to 45% by 2020 compared with the 2005 level.It is a strategic option to coordinate domestic sustainable development with coping with global climate change on the basis of China's national circumstances,representing the core content and key measures for transforming development pattern and realizing low-carbon development.To achieve the target,more capital and technology inputs are required for energy conservation and low-carbon development during the twelfth and Thirteenth Five Year Plan period than in the Eleventh Five Year Plan period.In addition,energy conservation achieved by structural adjustment,industrial upgrading and product value-added improvement is also expected to play a greater role.Therefore,China should strengthen technological innovation,make greater efforts to transform the development pattern,take advantage of the synergistic effect of policies and measures while coping with global climate change and building a domestic tow-oriented society.China should also establish an industrial system characterized by low-carbon emission.Then China will ultimately achieve a win-win situation in both domestic sustainable development and coping with global climate change.
基金supported by the National Natural Science Foundation of China(72140001 and 41921005)Shandong Provincial Science Fund for Excellent Youth Scholars(ZR2021YQ27)+1 种基金the National Social Science Fund of China(21ZDA065)the Natural Environment Research Council(2021GRIP02COP-AQ)。
文摘China is playing an increasing role in global climate change mitigation,and local authorities need more city-specifc information on the emissions trends and patterns when designing low-carbon policies.This study provides the most comprehensive COemission inventories of 287 Chinese cities from 2001 to2019.The emission inventories are compiled for 47 economic sectors and include energy-related emissions for 17 types of fossil fuels and process-related emissions from cement production.We further investigate the state of the emission peak in each city and reveal hidden driving forces.The results show that38 cities have proactively peaked their emissions for at least fve years and another 21 cities also have emission decline,but passively.The 38 proactively peaked cities achieved emission decline mainly by effciency improvements and structural changes in energy use,while the 21 passively emission declined cities reduced emissions at the cost of economic recession or population loss.We propose that those passively emission declined cities need to face up to the reasons that caused the emission to decline,and fully exploit the opportunities provided by industrial innovation and green investment brought by low-carbon targets to achieve economic recovery and carbon mitigation goals.Proactively peaked cities need to seek strategies to maintain the downward trend in emissions and avoid an emission rebound and thus provide successful models for cities with still growing emissions to achieve an emission peak.
基金The National Natural Science Foundation of China(71991481,71991484,41971163)The Humanities and Social Science Research Project of Hebei Education Department(SQ2021081)The National key research and development program(2016YFA0602800)。
文摘In this paper,the quadratic polynomial and cubic polynomial functions were applied to analyze the environmental Kuznets curve(EKC)of carbon emissions in Hebei Province.The improved STIRPAT model was also applied to assess the driving factors and reduction paths for carbon emissions in Hebei Province.The results lead to three main conclusions.Firstly,carbon emissions and economic growth in Hebei Province are in a positive correlation stage which has not formed the EKC curve,and the“decoupling”stage between carbon emissions and economic growth has not arrived yet.Secondly,the industrial structure,per capita GDP,fixed assets investment,population size and urbanization rate account for the highest proportion of carbon emissions.Carbon emissions can be reduced greatly by changing the energy structure,in which the proportion of coal is decreased year by year.Environmental regulation also has an obvious effect on the reduction of carbon emissions.Thirdly,it is suggested that the reduction of carbon emissions in Hebei Province should focus on four tasks:controlling the development of heavy industry,avoiding overcapacity,optimizing the industrial structure and accelerating the development of clean energy.