Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitr...Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mgkg^(-1) soil) to study the atmospheric CO_2 concentration effect on dry matter accumulation and Nuptake of spring wheat. The effects of CO_2 enrichment on the shoot and total mass depended largelyon soil nitrogen level, and the shoot and total mass increased significantly in the moderate to highN treatments but did not increase significantly in the low N treatment. Enriched CO_2 concentrationdid not increase more shoot and total mass in the drought treatment than in the well-wateredtreatment. Thus, elevated CO_2 did not ameliorate the depressive effects of drought and nitrogenstress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly dueto CO_2 enrichment in no N treatment under well-watered condition. Enriched CO_2 decreased shoot Ncontent and shoot and total N uptake; but it reduced root N content and uptake slightly. Shootcritical N concentration was lower for spring wheat grown at 700 μmol mol^(-1) CO_2 than at 350μmol mol^(-1) CO_2 in both well-watered and drought treatments. The critical N concentrations were16 and 19 g kg^(-1) for the well-watered treatment and drought treatment at elevated CO_2 and 21 and26 g kg^(-1) at ambient CO_2, respectively. The reductions in the movement of nutrients to theplant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increasein N use efficiency at elevated CO_2 could elucidate the reduction of shoot and root Nconcentrations.展开更多
NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air fo...NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air for a long time when the concentration is lower than the ppm level.Therefore,the conversion of low concentration of NO has attracted more and more attention.However,traditional physical or chemical methods are difficult to deal with low concentration of NO,having high requirements on equipment and being not cost‐effective.Semiconductor photocatalytic technology can convert low concentration of NO into non‐toxic products and reduce its harm.This work briefly surveys the commonly used materials,modification methods,and mechanisms for semiconductor photocatalytic conversion of low concentration of NO.In addition,the challenges and prospects of ppb level of NO treatment are also discussed,aiming to promote the development of semiconductor photocatalytic conversion of NO.展开更多
Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution chara...Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.展开更多
This paper aimed at studying the effect of different types of soil tillage systems on the change of total carbon (C) and nitrogen (N) in the soil structural units of different size after dry structural analysis of...This paper aimed at studying the effect of different types of soil tillage systems on the change of total carbon (C) and nitrogen (N) in the soil structural units of different size after dry structural analysis of soil. The research was carried out in a 6-field rotation system (grain maize-wheat-sunflower-wheat-bean-wheat) at the end of the 2nd rotation. Six out of 24 soil tillage systems were selected; they were applied independently and in combination in the crop rotation. After that, they were compared to the system with constant deep plowing. So a total of seven soil tillage systems were investigated. The selected systems for main soil tillage were the following: plowing (control variant), disking, cutting, nil tillage (direct sowing), plowing-disking, plowing-nil tillage, disking-nil tillage. Three depths of 0-10, 10-20 and 20-30 cm were studied, as well as soil structural units were of the following sizes: 〉 10 mm, 10-5, 5-3, 3-1, 1-0.25 mm and 〈 0.25 mm. As a result of systematic implementation of different soil tillage systems, higher N and C concentrations were established by the layers according to constant plowing. Constant disking and its alternation with nil tillage increased the total N concentration with 15.6% and 11.1%, respectively, in comparison with the constant plowing. The same was valid for C concentration in soil, but the highest increase was established in the variants with constant cutting and nil tillage. The exceeding was with 14.0% and 13.2%, in comparison to constant plowing. The redistribution of N and C depending on the structural soil units was most expressed in the 0-10 cm and 10-20 cm layers. The highest amounts of C and N were found in the soil units with size less than 5 mm, mainly in the 〈 0.25 mm fraction. At depth of 20-30 cm, the role of the size of soil structural units for C and N redistribution decreased strongly. The values of C/N ratio were moderate only under the use of constant disking. This index was low under all other soil tillage systems. The correlation of total N with C in soil was high, positive and significant depending on the size of structural soil units and the tillage systems, as average for the investigated factors in this experiment. The minimal tillage and the tillage without turning of soil, used independently and in combination, had the highest contribution to preserving the organic matter in the haplic Chernozems of Dobrudzha region.展开更多
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, a...Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic(A2 /O). The ASM2 d implemented on the platform of WEST2011 software and the Bio Win activated sludge/anaerobic digestion(AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2 d parameters(the reduction factor for denitrification(η NO3, H), the maximum growth rate of heterotrophs( μ H), the rate constant for stored polyphosphates in PAOs(q pp), and the hydrolysis rate constant(k h)) were adjusted. Whereas three Bio Win parameters(aerobic decay rate(b H), heterotrophic dissolved oxygen(DO) half saturation(K OA), and Y P /acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations(ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen(N-NO3), total nitrogen(TN), and total phosphorus(TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand(COD) to total Kjeldahl nitrogen(TKN) ratio(COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.展开更多
Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analy...Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analyzed and their possible causes discussed. The annual average concentrations of 03, NOx, SO2, and CO were 24.6 ± 23.9, 12.8 ± 10.2, 4.0 ± 4.8, and 348 ± 185 ppbv, respectively. The observed levels of the gaseous pollutants are comparable to those at other background sites in China. The most obvious diurnal variation of 03 was observed in autumn, with minima in the early morning and maxima in the afternoon. The diurnal variations of SO2 showed high values during the day. The diurnal cycles of NOx showed higher values in the morning and lower values during the night. Higher CO concentrations were observed in spring followed by winter, autumn, and summer. Biomass burning, in combination with the transport of regional pollution, is an important source of CO, SO2, and NOx in spring and winter. Backward trajectories were calculated and analyzed together with corresponding pollutant concentrations. The results indicate that air masses passing over polluted areas are responsible for the high concentrations of gaseous pollutants at the Dinghushan background station.展开更多
The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/...The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those ofindolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.展开更多
It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems, deteriorating soil quality and changing climate. Its management remains a complex enigma for the scientifi...It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems, deteriorating soil quality and changing climate. Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions. This article reviews the management aspects of soil C dynamics in light of recent advances, particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate. Globally, drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability, resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions, degraded soil quality, and increased atmospheric CO2 concentrations, leading to climate warming. Predicted climate warming is proposed to enhance SOC decomposition, which may further increase soil N availability, leading to higher soil CO2 effiux. However, a literature survey revealed that soil may also act as a potential C sink, if we could manage soil inorganic N pools and link microbial processes properly. Studies also indicated that the relative, rather than the absolute, availability of inorganic N pools might be of key importance under changing climate, as these N pools are variably affected by moisture-temperature interactions, and they have variable impacts on SOC turnover. Therefore, multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.展开更多
Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous ...Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations.展开更多
基金the National Key Basic Research Support Foundation(NKBRSF)of China(No.G1999011708) the Guangxi University Science funds,China(No.1701).
文摘Spring wheat (Triticum aestivum L. cv. Dingxi No. 8654) was treated with twoconcentrations of atmospheric CO_2 (350 and 700 μmol mol^(-1)), two levels of soil moisture(well-watered and drought) and five rates of nitrogen fertilizer (0, 50, 100, 150, and 200 mgkg^(-1) soil) to study the atmospheric CO_2 concentration effect on dry matter accumulation and Nuptake of spring wheat. The effects of CO_2 enrichment on the shoot and total mass depended largelyon soil nitrogen level, and the shoot and total mass increased significantly in the moderate to highN treatments but did not increase significantly in the low N treatment. Enriched CO_2 concentrationdid not increase more shoot and total mass in the drought treatment than in the well-wateredtreatment. Thus, elevated CO_2 did not ameliorate the depressive effects of drought and nitrogenstress. In addition, root mass decreased slightly and root/shoot ratio decreased significantly dueto CO_2 enrichment in no N treatment under well-watered condition. Enriched CO_2 decreased shoot Ncontent and shoot and total N uptake; but it reduced root N content and uptake slightly. Shootcritical N concentration was lower for spring wheat grown at 700 μmol mol^(-1) CO_2 than at 350μmol mol^(-1) CO_2 in both well-watered and drought treatments. The critical N concentrations were16 and 19 g kg^(-1) for the well-watered treatment and drought treatment at elevated CO_2 and 21 and26 g kg^(-1) at ambient CO_2, respectively. The reductions in the movement of nutrients to theplant roots through mass flow due to the enhancement in WUE (water use efficiency) and the increasein N use efficiency at elevated CO_2 could elucidate the reduction of shoot and root Nconcentrations.
文摘NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air for a long time when the concentration is lower than the ppm level.Therefore,the conversion of low concentration of NO has attracted more and more attention.However,traditional physical or chemical methods are difficult to deal with low concentration of NO,having high requirements on equipment and being not cost‐effective.Semiconductor photocatalytic technology can convert low concentration of NO into non‐toxic products and reduce its harm.This work briefly surveys the commonly used materials,modification methods,and mechanisms for semiconductor photocatalytic conversion of low concentration of NO.In addition,the challenges and prospects of ppb level of NO treatment are also discussed,aiming to promote the development of semiconductor photocatalytic conversion of NO.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-223)National Natural Science Foundation of China (No. 40803023)+1 种基金Key Program of Natural Science Foundation of Shandong Province(No. ZR2010DZ001)Talents Foundation of Chinese Academy of Sciences (No. AJ0809BX-036)
文摘Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.
文摘This paper aimed at studying the effect of different types of soil tillage systems on the change of total carbon (C) and nitrogen (N) in the soil structural units of different size after dry structural analysis of soil. The research was carried out in a 6-field rotation system (grain maize-wheat-sunflower-wheat-bean-wheat) at the end of the 2nd rotation. Six out of 24 soil tillage systems were selected; they were applied independently and in combination in the crop rotation. After that, they were compared to the system with constant deep plowing. So a total of seven soil tillage systems were investigated. The selected systems for main soil tillage were the following: plowing (control variant), disking, cutting, nil tillage (direct sowing), plowing-disking, plowing-nil tillage, disking-nil tillage. Three depths of 0-10, 10-20 and 20-30 cm were studied, as well as soil structural units were of the following sizes: 〉 10 mm, 10-5, 5-3, 3-1, 1-0.25 mm and 〈 0.25 mm. As a result of systematic implementation of different soil tillage systems, higher N and C concentrations were established by the layers according to constant plowing. Constant disking and its alternation with nil tillage increased the total N concentration with 15.6% and 11.1%, respectively, in comparison with the constant plowing. The same was valid for C concentration in soil, but the highest increase was established in the variants with constant cutting and nil tillage. The exceeding was with 14.0% and 13.2%, in comparison to constant plowing. The redistribution of N and C depending on the structural soil units was most expressed in the 0-10 cm and 10-20 cm layers. The highest amounts of C and N were found in the soil units with size less than 5 mm, mainly in the 〈 0.25 mm fraction. At depth of 20-30 cm, the role of the size of soil structural units for C and N redistribution decreased strongly. The values of C/N ratio were moderate only under the use of constant disking. This index was low under all other soil tillage systems. The correlation of total N with C in soil was high, positive and significant depending on the size of structural soil units and the tillage systems, as average for the investigated factors in this experiment. The minimal tillage and the tillage without turning of soil, used independently and in combination, had the highest contribution to preserving the organic matter in the haplic Chernozems of Dobrudzha region.
基金Supported by the College of Scientific Innovation Significant Cultivation Fund Financing Projects(No.708047)the Key Special Program for the Pollution Control(No.2012ZX07101-003)+1 种基金the National Natural Science Foundation of China(No.51208173)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic(A2 /O). The ASM2 d implemented on the platform of WEST2011 software and the Bio Win activated sludge/anaerobic digestion(AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2 d parameters(the reduction factor for denitrification(η NO3, H), the maximum growth rate of heterotrophs( μ H), the rate constant for stored polyphosphates in PAOs(q pp), and the hydrolysis rate constant(k h)) were adjusted. Whereas three Bio Win parameters(aerobic decay rate(b H), heterotrophic dissolved oxygen(DO) half saturation(K OA), and Y P /acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations(ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen(N-NO3), total nitrogen(TN), and total phosphorus(TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand(COD) to total Kjeldahl nitrogen(TKN) ratio(COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA05100100)
文摘Measurements of gaseous pollutants (03, NOx, SO2, and CO) were conducted at Dinghushan background station in southern China from January to December 2013. The levels and variations of O3, NOx, SO2, and CO were analyzed and their possible causes discussed. The annual average concentrations of 03, NOx, SO2, and CO were 24.6 ± 23.9, 12.8 ± 10.2, 4.0 ± 4.8, and 348 ± 185 ppbv, respectively. The observed levels of the gaseous pollutants are comparable to those at other background sites in China. The most obvious diurnal variation of 03 was observed in autumn, with minima in the early morning and maxima in the afternoon. The diurnal variations of SO2 showed high values during the day. The diurnal cycles of NOx showed higher values in the morning and lower values during the night. Higher CO concentrations were observed in spring followed by winter, autumn, and summer. Biomass burning, in combination with the transport of regional pollution, is an important source of CO, SO2, and NOx in spring and winter. Backward trajectories were calculated and analyzed together with corresponding pollutant concentrations. The results indicate that air masses passing over polluted areas are responsible for the high concentrations of gaseous pollutants at the Dinghushan background station.
基金Project (No. 2007CB109305) supported by the National Basic Research Program (973) of China
文摘The effects of CO2 enrichment on the growth and glueosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those ofindolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.
文摘It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems, deteriorating soil quality and changing climate. Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions. This article reviews the management aspects of soil C dynamics in light of recent advances, particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate. Globally, drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability, resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions, degraded soil quality, and increased atmospheric CO2 concentrations, leading to climate warming. Predicted climate warming is proposed to enhance SOC decomposition, which may further increase soil N availability, leading to higher soil CO2 effiux. However, a literature survey revealed that soil may also act as a potential C sink, if we could manage soil inorganic N pools and link microbial processes properly. Studies also indicated that the relative, rather than the absolute, availability of inorganic N pools might be of key importance under changing climate, as these N pools are variably affected by moisture-temperature interactions, and they have variable impacts on SOC turnover. Therefore, multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.
基金supported by grants(20292081)from the Ministry of Education,Culture,Sports,Science and Technology,Japan.
文摘Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations.