锂金属负极具有较高的理论比容量(3860 mAh/g)和较低的还原电势(-3.04 V vs.标准氢电势),被誉为最具发展潜力的负极材料,但是锂金属负极中的枝晶、死锂等问题阻碍了锂金属电池的商业化发展。针对锂金属负极中出现的问题,研究人员提出了...锂金属负极具有较高的理论比容量(3860 mAh/g)和较低的还原电势(-3.04 V vs.标准氢电势),被誉为最具发展潜力的负极材料,但是锂金属负极中的枝晶、死锂等问题阻碍了锂金属电池的商业化发展。针对锂金属负极中出现的问题,研究人员提出了大量的解决方案,其中,三维集流体不仅可以降低电流密度,缓解枝晶生长,还可以容纳锂沉积/溶解过程中发生的体积变化。而碳基三维集流体更是因其稳定的化学性质和较小的密度受到了极大的关注。从碳基三维集流体的制备、改性以及对锂沉积/溶解的影响进行介绍,并对其发展进行了展望。展开更多
Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters wi...Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.展开更多
文摘锂金属负极具有较高的理论比容量(3860 mAh/g)和较低的还原电势(-3.04 V vs.标准氢电势),被誉为最具发展潜力的负极材料,但是锂金属负极中的枝晶、死锂等问题阻碍了锂金属电池的商业化发展。针对锂金属负极中出现的问题,研究人员提出了大量的解决方案,其中,三维集流体不仅可以降低电流密度,缓解枝晶生长,还可以容纳锂沉积/溶解过程中发生的体积变化。而碳基三维集流体更是因其稳定的化学性质和较小的密度受到了极大的关注。从碳基三维集流体的制备、改性以及对锂沉积/溶解的影响进行介绍,并对其发展进行了展望。
基金sponsored jointly by the National Natural Science Foundation of China(No.41074098)the Key State Science and Technology Project(2011ZX05023-005-005)China University of Petroleum(Beijing) Fund(KYJJ2012-05-08)
文摘Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.