Sodium 2,3-dihydroxypropyl dithiocarbonate(SGX), which contains —OH and —CSS— in the molecule, was used to explore selective depression of galena from chalcopyrite in the flotation tests with ammonium dibutyl dit...Sodium 2,3-dihydroxypropyl dithiocarbonate(SGX), which contains —OH and —CSS— in the molecule, was used to explore selective depression of galena from chalcopyrite in the flotation tests with ammonium dibutyl dithiophosphate(DDTP), and zeta potential and adsorption measurements were performed to study the interaction between SGX and minerals. The flotation tests of single minerals show that SGX has slight activation on chalcopyrite and strong depression on galena in the whole p H range. With SGX dosage increasing, the recovery of galena decreases rapidly, while that of chalcopyrite increases slightly. At p H=6, the copper grade and recovery of concentrate are 29.52% and 82.15% respectively when mixture of two minerals is tested. Zeta potential and adsorption measurements indicate that SGX has strong adsorption on galena and slight adsorption on chalcopyrite.展开更多
Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mine...Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mineral concentrates. Carbon and vanadium minerals were efficiently separated via regrinding process in the carbon flotation circuit. The results show that the grade and recovery of V2O5 in flotation concentrate are 1.32% and 88.38%, respectively, and the tailings yield is 38.36%. Meanwhile, the grade and recovery of the carbon mineral are 30.08% and 75.10%, respectively, which may be utilized as the fossil fuels directly. The leaching rates of the flotation products are as high as 85%. The results demonstrate that there is no direct adverse effect of flotation process on vanadium leaching. This technology could potentially reduce cost and increase the treatment capacity of vanadium extraction and provide reference to stone coal flotation technology.展开更多
A new process for vanadium recovery from stone coal by roasting-flotation was investigated based on the mineralogy. The process comprised four key steps: decarburization, preferential grinding, desliming and flotatio...A new process for vanadium recovery from stone coal by roasting-flotation was investigated based on the mineralogy. The process comprised four key steps: decarburization, preferential grinding, desliming and flotation. In the decarburization stage, roasting at 550 ℃ effectively avoided the negative effect of the carbonaceous materials in raw ore and generation of free CaO from calcite decomposition during roasting. Through preferential grinding, the high acid-consuming minerals were enriched in the middle fractions, while mica was enriched in the fine and coarse fractions. Through flotation, the final concentrate can be obtained with V2O5 grade of 1.07% and recovery of 83.30%. Moreover, the vanadium leaching rate of the final concentrate increased 13.53% compared to that of the feed. The results reveal that the decarburization by roasting at 550 ℃ is feasible and has little negative impact on mica flotation, and vanadium recovery from stone coal is conducive to reducing handling quantity, acid consumption and production cost.展开更多
In the cationic flotation of pyrolusite using dodecyl ammine(DDA),the depressive effect of sodium carbonate andcalcium chloride on the calcite mineral was investigated systematically through flotation experiments,FTIR...In the cationic flotation of pyrolusite using dodecyl ammine(DDA),the depressive effect of sodium carbonate andcalcium chloride on the calcite mineral was investigated systematically through flotation experiments,FTIR analysis,contact anglemeasurements and zeta potential tests.The microflotation experiments showed that both depressant agents decrease the flotationrecovery of calcite significantly.In addition,sodium carbonate acts as activator agent for pyrolusite,and increases its floatability.Theflotation experiments and contact angle measurements indicated that the selective depression effect of sodium carbonate on thecalcite mineral is more than that of calcium chloride.As evidenced by zeta potential and FT-IR analysis,sodium carbonate decreasesthe negative charges on the surface of calcite mineral and subsequently reduces the adsorption of DDA collector through electrostaticforces.At a pH of7.5,using2000g/t DDA and1500g/t sodium carbonate,a pyrolusite concentrate containing almost40%MnOwith71.5%recovery is achieved by carrying out the ore flotation experiments on the tabling pre-concentrate.展开更多
This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measu...This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measurements werecarried out to investigate the selective depression mechanism of DBT on chalcopyrite.Zeta potential and FTIR measurementsrevealed that DBT had higher affinity for chalcopyrite than molybdenite and the XPS results of chalcopyrite before and aftertreatment with DBT further proved that DBT adsorbed on chalcopyrite surface.The investigation indicates that the mechanism ofDBT adsorbing on chalcopyrite is mainly physical adsorption.Locked circuit experiments were carried out and the results showedthat DBT could be considered as a cleaner option in commercial Cu?Mo flotation separation circuits.展开更多
基金Project(2012BAB01B03)supported by National Key Technologies R&D Program of China
文摘Sodium 2,3-dihydroxypropyl dithiocarbonate(SGX), which contains —OH and —CSS— in the molecule, was used to explore selective depression of galena from chalcopyrite in the flotation tests with ammonium dibutyl dithiophosphate(DDTP), and zeta potential and adsorption measurements were performed to study the interaction between SGX and minerals. The flotation tests of single minerals show that SGX has slight activation on chalcopyrite and strong depression on galena in the whole p H range. With SGX dosage increasing, the recovery of galena decreases rapidly, while that of chalcopyrite increases slightly. At p H=6, the copper grade and recovery of concentrate are 29.52% and 82.15% respectively when mixture of two minerals is tested. Zeta potential and adsorption measurements indicate that SGX has strong adsorption on galena and slight adsorption on chalcopyrite.
基金Project(2012BAB07B05)supported by the National Science&Technology Support Program during"Twelfth Five-Year"Plan Period
文摘Flotation technology of high-carbon stone coal bearing vanadium was investigated based on mineralogical study. Carbon and vanadium flotation circuits were included in the flotation process for carbon and vanadium mineral concentrates. Carbon and vanadium minerals were efficiently separated via regrinding process in the carbon flotation circuit. The results show that the grade and recovery of V2O5 in flotation concentrate are 1.32% and 88.38%, respectively, and the tailings yield is 38.36%. Meanwhile, the grade and recovery of the carbon mineral are 30.08% and 75.10%, respectively, which may be utilized as the fossil fuels directly. The leaching rates of the flotation products are as high as 85%. The results demonstrate that there is no direct adverse effect of flotation process on vanadium leaching. This technology could potentially reduce cost and increase the treatment capacity of vanadium extraction and provide reference to stone coal flotation technology.
基金Project(2015BAB03B05)supported by the National Key Technology R&D Program during the"12th Five-year Plan"Period,ChinaProject(51404177)supported by the National Natural Science Foundation of China
文摘A new process for vanadium recovery from stone coal by roasting-flotation was investigated based on the mineralogy. The process comprised four key steps: decarburization, preferential grinding, desliming and flotation. In the decarburization stage, roasting at 550 ℃ effectively avoided the negative effect of the carbonaceous materials in raw ore and generation of free CaO from calcite decomposition during roasting. Through preferential grinding, the high acid-consuming minerals were enriched in the middle fractions, while mica was enriched in the fine and coarse fractions. Through flotation, the final concentrate can be obtained with V2O5 grade of 1.07% and recovery of 83.30%. Moreover, the vanadium leaching rate of the final concentrate increased 13.53% compared to that of the feed. The results reveal that the decarburization by roasting at 550 ℃ is feasible and has little negative impact on mica flotation, and vanadium recovery from stone coal is conducive to reducing handling quantity, acid consumption and production cost.
文摘In the cationic flotation of pyrolusite using dodecyl ammine(DDA),the depressive effect of sodium carbonate andcalcium chloride on the calcite mineral was investigated systematically through flotation experiments,FTIR analysis,contact anglemeasurements and zeta potential tests.The microflotation experiments showed that both depressant agents decrease the flotationrecovery of calcite significantly.In addition,sodium carbonate acts as activator agent for pyrolusite,and increases its floatability.Theflotation experiments and contact angle measurements indicated that the selective depression effect of sodium carbonate on thecalcite mineral is more than that of calcium chloride.As evidenced by zeta potential and FT-IR analysis,sodium carbonate decreasesthe negative charges on the surface of calcite mineral and subsequently reduces the adsorption of DDA collector through electrostaticforces.At a pH of7.5,using2000g/t DDA and1500g/t sodium carbonate,a pyrolusite concentrate containing almost40%MnOwith71.5%recovery is achieved by carrying out the ore flotation experiments on the tabling pre-concentrate.
基金Project(2016zzts109)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measurements werecarried out to investigate the selective depression mechanism of DBT on chalcopyrite.Zeta potential and FTIR measurementsrevealed that DBT had higher affinity for chalcopyrite than molybdenite and the XPS results of chalcopyrite before and aftertreatment with DBT further proved that DBT adsorbed on chalcopyrite surface.The investigation indicates that the mechanism ofDBT adsorbing on chalcopyrite is mainly physical adsorption.Locked circuit experiments were carried out and the results showedthat DBT could be considered as a cleaner option in commercial Cu?Mo flotation separation circuits.