Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galva...Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.展开更多
The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after mo...The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after molding,carbonization and sintering.The phase,morphology,porosity,thermal conductivity,thermal expansion coefficient,and thermal shock resistance were analyzed.The results show that porous silicon carbide ceramics can be produced at low temperature.The grain size of porous silicon carbide ceramic is small,and the thermal conductivity is enhanced significantly.Composite additives also improve the thermal shock resistance of porous ceramics.The bending strength loss rate after 30 times of thermal shock test of the porous ceramics which were added Al2O3-SiO2-Y2O3 and sintered at 1 650 ℃ is only 6.5%.Moreover,the pore inside of the sample is smooth,and the pore size distribution is uniform.Composite additives make little effect on the thermal expansion coefficient of the porous silicon carbide ceramics.展开更多
This paper broke with the conventional ways of oxidizing and catalyzing. It researched a new way to prepare activated carbon from anthracites which employed oxidative additives. It investigated the effects of the addi...This paper broke with the conventional ways of oxidizing and catalyzing. It researched a new way to prepare activated carbon from anthracites which employed oxidative additives. It investigated the effects of the additive on adsorption and activation rate of the resultant activated carbon. The results showed that the new additives not only improved the adsorptivity but also increased the activation rate greatly, which is able to decrease the preparation cost.展开更多
An experimental study of thermal DeNOx process with different additives was performed in an electricityheated tubular flow reactor,showing that CO is less effective to lower the optimum temperature than H2 and CH4. Th...An experimental study of thermal DeNOx process with different additives was performed in an electricityheated tubular flow reactor,showing that CO is less effective to lower the optimum temperature than H2 and CH4. The maximum NO reduction is lowered with H2 added,while it is hardly affected by CO or CH4.The temperature window is widened appreciably with CH4 added,while it is narrowed slightly by H2 or CO.The disadvantage of CH4 is that it causes CO emission due to its incomplete oxidation,and the maximum conversion of CH4 to CO is more than 50%.In general,the calculation using a detailed chemical kinetic model predicts most of the process features reasonably well.The analysis on reaction mechanism shows that the effects of these additives on NO reduction are achieved principally by promoting the production of·OH radical.展开更多
The theoretical expression of the relationship between optimumdoping content and crystal structure is presented as well as thepreparation methods. By using this expression, the optimum dopingcontent of silicon-coped b...The theoretical expression of the relationship between optimumdoping content and crystal structure is presented as well as thepreparation methods. By using this expression, the optimum dopingcontent of silicon-coped boron carbide thin film is calculated. Thequantitative calculation value is consistent with the experimentalresults. This theoretical expression is also appropriate to resolvethe optimum doping content for Other electric materials.展开更多
基金Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of ChinaProject(20803095)supported by the National Natural Science Foundation of China
文摘Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.
基金Project(50802052)supported by the National Natural Science Foundation of China
文摘The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after molding,carbonization and sintering.The phase,morphology,porosity,thermal conductivity,thermal expansion coefficient,and thermal shock resistance were analyzed.The results show that porous silicon carbide ceramics can be produced at low temperature.The grain size of porous silicon carbide ceramic is small,and the thermal conductivity is enhanced significantly.Composite additives also improve the thermal shock resistance of porous ceramics.The bending strength loss rate after 30 times of thermal shock test of the porous ceramics which were added Al2O3-SiO2-Y2O3 and sintered at 1 650 ℃ is only 6.5%.Moreover,the pore inside of the sample is smooth,and the pore size distribution is uniform.Composite additives make little effect on the thermal expansion coefficient of the porous silicon carbide ceramics.
文摘This paper broke with the conventional ways of oxidizing and catalyzing. It researched a new way to prepare activated carbon from anthracites which employed oxidative additives. It investigated the effects of the additive on adsorption and activation rate of the resultant activated carbon. The results showed that the new additives not only improved the adsorptivity but also increased the activation rate greatly, which is able to decrease the preparation cost.
基金Supported by the State Key Development Program for Basic Research of China(2006CB200303) the National Natural Science Foundation of China (50706011) the National High Technology Research and Development Program of China(2007AA05Z337)
文摘An experimental study of thermal DeNOx process with different additives was performed in an electricityheated tubular flow reactor,showing that CO is less effective to lower the optimum temperature than H2 and CH4. The maximum NO reduction is lowered with H2 added,while it is hardly affected by CO or CH4.The temperature window is widened appreciably with CH4 added,while it is narrowed slightly by H2 or CO.The disadvantage of CH4 is that it causes CO emission due to its incomplete oxidation,and the maximum conversion of CH4 to CO is more than 50%.In general,the calculation using a detailed chemical kinetic model predicts most of the process features reasonably well.The analysis on reaction mechanism shows that the effects of these additives on NO reduction are achieved principally by promoting the production of·OH radical.
文摘The theoretical expression of the relationship between optimumdoping content and crystal structure is presented as well as thepreparation methods. By using this expression, the optimum dopingcontent of silicon-coped boron carbide thin film is calculated. Thequantitative calculation value is consistent with the experimentalresults. This theoretical expression is also appropriate to resolvethe optimum doping content for Other electric materials.