Herein, we report a plasmonic metal nanoparti- cle-involved sensor for cyanide ion based on the inner filter effect by using photoluminescent carbon dots as the signal reporter. With commercial bee pollen as the carbo...Herein, we report a plasmonic metal nanoparti- cle-involved sensor for cyanide ion based on the inner filter effect by using photoluminescent carbon dots as the signal reporter. With commercial bee pollen as the carbon resource, we synthesized photoluminescent nitrogen-doped carbon dots by a one-pot hydrothermal process, and their fluores- cence quantum yield reached as high as 10.2 % ± 0.5 %. Fluorescence measurements indicated that the fluorescence of the carbon dots was insusceptible to the presence of many environmentally ordinary ions. Thanks to this “inert” property, we then developed a turn-on fluorescent sensor for cyanide ion in an inner filter effect manner by using carbon dots as the fluorophore and gold or silver nanoparticle as the light absorber. This detection technique is expected to be used for other metal nanoparticles-carbon dots ensemble fluorescent assays.展开更多
基金the funding support from the National Basic Research Program of China(2014CB931800,2013CB933900)the National Natural Science Foundation of China(21407140,21431006,91022032,91227103)+1 种基金J.Zhang is grateful for the China Postdoctoral Science Foundation(2013M531515)the Fundamental Research Funds for the Central Universities(WK2060190036)
文摘Herein, we report a plasmonic metal nanoparti- cle-involved sensor for cyanide ion based on the inner filter effect by using photoluminescent carbon dots as the signal reporter. With commercial bee pollen as the carbon resource, we synthesized photoluminescent nitrogen-doped carbon dots by a one-pot hydrothermal process, and their fluores- cence quantum yield reached as high as 10.2 % ± 0.5 %. Fluorescence measurements indicated that the fluorescence of the carbon dots was insusceptible to the presence of many environmentally ordinary ions. Thanks to this “inert” property, we then developed a turn-on fluorescent sensor for cyanide ion in an inner filter effect manner by using carbon dots as the fluorophore and gold or silver nanoparticle as the light absorber. This detection technique is expected to be used for other metal nanoparticles-carbon dots ensemble fluorescent assays.