Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical...Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.展开更多
The deep ocean piezosphere accounts for a significant part of the global ocean,hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carb...The deep ocean piezosphere accounts for a significant part of the global ocean,hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle.The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean.However,there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production,transformation,degradation,and export of marine dissolved and particulate organic matter(DOM and POM)in the deep ocean and the ecological consequence.Here we propose the POM-DOM piezophilic microorganism continuum(PDPMC)conceptual model,to address these important biogeochemical processes in the deep ocean.We propose that piezophilic microorganisms(bacteria and archaea)play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes,enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter,and serve as the primary driver for carbon cycle in the deep ocean.展开更多
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences(Grant No.XDB03030505)the One Hundred Young Persons Project of the Institute of Mountain Hazards and Environment(Grant No.SDSQB-2010-02)
文摘Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.
基金supported by the National Natural Science Foundation of China(Grant Nos.91328208,41240039,41373071)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.201200-72110026)
文摘The deep ocean piezosphere accounts for a significant part of the global ocean,hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle.The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean.However,there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production,transformation,degradation,and export of marine dissolved and particulate organic matter(DOM and POM)in the deep ocean and the ecological consequence.Here we propose the POM-DOM piezophilic microorganism continuum(PDPMC)conceptual model,to address these important biogeochemical processes in the deep ocean.We propose that piezophilic microorganisms(bacteria and archaea)play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes,enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter,and serve as the primary driver for carbon cycle in the deep ocean.