用原位化学氧化聚合的方法合成聚苯胺/气相生长的碳纤维的复合材料,采用SEM,FTIR和TGA对聚苯胺/气相生长的碳纤维复合材料的微观形貌、结构和热稳定性进行测定。SEM结果显示,聚苯胺/气相生长的碳纤维复合材料属于纳米级别,形貌与气相生...用原位化学氧化聚合的方法合成聚苯胺/气相生长的碳纤维的复合材料,采用SEM,FTIR和TGA对聚苯胺/气相生长的碳纤维复合材料的微观形貌、结构和热稳定性进行测定。SEM结果显示,聚苯胺/气相生长的碳纤维复合材料属于纳米级别,形貌与气相生长的碳纤维类似,推测苯胺的聚合作用发生在碳纤维的表面。FTIR结果显示聚苯胺与复合材料具有相似的图谱,进一步证实聚合作用发生在碳材料的表面,聚合过程中未产生新的键合作用。将复合材料作为阴极催化剂修饰到碳布的基底电极上,修饰量为5 mg/cm^2,结果表明复合材料修饰的微生物燃料电池的功率密度最大值为299 m W/m^2,比未修饰的燃料电池提高6.5倍。电化学阻抗谱图较好地符合Nyquist模型,并给出等效电路图。聚苯胺/气相生长的碳纤维复合材料可以作为一种廉价且性能优良的阴极氧气还原反应催化剂。展开更多
文摘用原位化学氧化聚合的方法合成聚苯胺/气相生长的碳纤维的复合材料,采用SEM,FTIR和TGA对聚苯胺/气相生长的碳纤维复合材料的微观形貌、结构和热稳定性进行测定。SEM结果显示,聚苯胺/气相生长的碳纤维复合材料属于纳米级别,形貌与气相生长的碳纤维类似,推测苯胺的聚合作用发生在碳纤维的表面。FTIR结果显示聚苯胺与复合材料具有相似的图谱,进一步证实聚合作用发生在碳材料的表面,聚合过程中未产生新的键合作用。将复合材料作为阴极催化剂修饰到碳布的基底电极上,修饰量为5 mg/cm^2,结果表明复合材料修饰的微生物燃料电池的功率密度最大值为299 m W/m^2,比未修饰的燃料电池提高6.5倍。电化学阻抗谱图较好地符合Nyquist模型,并给出等效电路图。聚苯胺/气相生长的碳纤维复合材料可以作为一种廉价且性能优良的阴极氧气还原反应催化剂。