In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability...In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability of silicon resources.However,their large volume expansion and fragile solid electrolyte interface(SEI)film hinder their commercial application.To solve these problems,Si has been combined with various carbon materials to increase their structural stability and improve their interface properties.The use of different carbon materials,such as amorphous carbon and graphite,as three-dimensional(3D)protective anode coatings that help buffer mechanical strain and isolate the electrolyte is detailed,and novel methods for applying the coatings are outlined.However,carbon materials used as a protective layer still have some disadvantages,necessitating their modification.Recent developments have focused on modifying the protective carbon shells,and substitutes for the carbon have been suggested.展开更多
We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion ba...We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.展开更多
文摘In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability of silicon resources.However,their large volume expansion and fragile solid electrolyte interface(SEI)film hinder their commercial application.To solve these problems,Si has been combined with various carbon materials to increase their structural stability and improve their interface properties.The use of different carbon materials,such as amorphous carbon and graphite,as three-dimensional(3D)protective anode coatings that help buffer mechanical strain and isolate the electrolyte is detailed,and novel methods for applying the coatings are outlined.However,carbon materials used as a protective layer still have some disadvantages,necessitating their modification.Recent developments have focused on modifying the protective carbon shells,and substitutes for the carbon have been suggested.
基金We acknowledge financial support from the National Science Foundation (CCF 0726815 and CCF 0702204).
文摘We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.