Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocastin...Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocasting, stir casting, and compocasting techniques. Effects of addition of carbon nanotubes (CNTs), casting process and the applied load on wear properties and mechanisms were investigated. It was found that wear loss, wear rate and friction coefficient of nanocomposite samples remarkably declined by the addition of CNTs. Moreover, changing the casting process from fully liquid to semisolid routes, plus increasing fractions of the primary phase were the two factors that improved the wear properties of the investigated samples, especially nanocomposite ones. In addition, it was revealed that adhesion and delamination were the dominant wear mechanism of the monolithic samples produced by fully liquid and semisolid routes, respectively. However, regardless of fabrication techniques, the abrasion was the main wear mechanism of nanocomposite samples.展开更多
A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films...A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.展开更多
The carbon nanotubes(CNTs) reinforced Al-Cu matrix composites were prepared by hot pressing sintering and hot rolling, and the effects of Cu content on the interfacial reaction between Al and CNTs, the precipitation b...The carbon nanotubes(CNTs) reinforced Al-Cu matrix composites were prepared by hot pressing sintering and hot rolling, and the effects of Cu content on the interfacial reaction between Al and CNTs, the precipitation behavior of Cu-containing precipitates, and the resultant mechanical properties of the composites were systematically investigated. The results showed that the increase of Cu content can not only increase the number and size of Cu-containing precipitate generated during the composite fabrication processes, but also promote the interfacial reaction between CNTs and Al matrix, leading to the intensified conversion of CNTs into Al_(4)C_(3). As a result, the composite containing 1 wt.% Cu possesses the highest strength, elastic modulus and hardness among all composites, due to the maintenance of the original structure of CNTs. Moreover, the increase of Cu content can change the dominant strengthening mechanisms for the enhanced strength of the fabricated composites.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sinter...Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sintering temperature of 1500 °C and time of 10 min exhibited optimum mechanical properties at room temperature in terms of fracture toughness and transverse rupture strength.MoSi_2 based composite with 6.0% CNTs(volume fraction) had the highest fracture toughness,transverse rupture strength and hardness,which were improved by about 25.7%,51.5% and 24.4% respectively,as compared with pure MoSi_2.A Mo_(4.8)Si_3C_(0.6) phase was detected in CNTs/MoSi_2 composites by both X-ray diffraction(XRD) method and microstructure analysis with scanning electron microscopy(SEM).It is believed that the fine grains and well dispersed small Mo_(4.8)Si_3C_(0.6) particles had led to a higher hardness and strength of CNTs/MoSi_2 composites because of their particle pullout,crack deflection and micro-bridging effects.展开更多
A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes, carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which ...A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes, carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on micro- electrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.展开更多
Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied fr...Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites.展开更多
An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and ...An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and the carbon nanotube were very close, 30-60 V dc or ae was applied between them, and the carbon nanotube was divided and attached to the end of the silicon probe. Comparing with the arc discharge method, the new method need not coat the silicon probe with metal in advance, which can greatly reduce the fabrication difficulty and cost. The fabricated carbon nanotube probe exhibits the good property of high aspect ratio and can reflect the true topography more accurately than the silicon probe.展开更多
基金financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISi S” (No. К2-2019-007)
文摘Tribological behaviors of monolithic A356 aluminum alloy castings and A356.CNT nanocomposite castings, fabricated by fully liquid and semisolid routes were examined. Samples were prepared by melt agitation, rheocasting, stir casting, and compocasting techniques. Effects of addition of carbon nanotubes (CNTs), casting process and the applied load on wear properties and mechanisms were investigated. It was found that wear loss, wear rate and friction coefficient of nanocomposite samples remarkably declined by the addition of CNTs. Moreover, changing the casting process from fully liquid to semisolid routes, plus increasing fractions of the primary phase were the two factors that improved the wear properties of the investigated samples, especially nanocomposite ones. In addition, it was revealed that adhesion and delamination were the dominant wear mechanism of the monolithic samples produced by fully liquid and semisolid routes, respectively. However, regardless of fabrication techniques, the abrasion was the main wear mechanism of nanocomposite samples.
文摘A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.
基金The financial supports from the National Natural Science Foundation of China (Nos. 52004101 and 52071269)the Chinese Postdoctoral Science Foundation (No. 2020T130246)+2 种基金the Fund of the State Key Laboratory of Solidification Processing in NWPU, China (No. SKLSP202121)the Guangdong Basic and Applied Basic Research Foundation, China (No. 2020A1515110621)the Fundamental Research Funds for the Central Universities, China (No. 11620345)。
文摘The carbon nanotubes(CNTs) reinforced Al-Cu matrix composites were prepared by hot pressing sintering and hot rolling, and the effects of Cu content on the interfacial reaction between Al and CNTs, the precipitation behavior of Cu-containing precipitates, and the resultant mechanical properties of the composites were systematically investigated. The results showed that the increase of Cu content can not only increase the number and size of Cu-containing precipitate generated during the composite fabrication processes, but also promote the interfacial reaction between CNTs and Al matrix, leading to the intensified conversion of CNTs into Al_(4)C_(3). As a result, the composite containing 1 wt.% Cu possesses the highest strength, elastic modulus and hardness among all composites, due to the maintenance of the original structure of CNTs. Moreover, the increase of Cu content can change the dominant strengthening mechanisms for the enhanced strength of the fabricated composites.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金Project(51371155)supported by the National Natural Science Foundation of ChinaProject(2014H0046)supported by the Key Science and Technology Project of Fujian Province,China+2 种基金Project(3502Z20143036)supported by the Scientific Research Fund of Xiamen,ChinaProject(JB13149)supported by the Education Department Science and Technology Project of Fujian Province,ChinaProject(2012D131)supported by the Natural Science Foundation Guidance Project of Fujian Province,China
文摘Molybdenum disilicide(MoSi_2) based composites with various contents of carbon nanotubes(CNTs) were fabricated by spark plasma sintering(SPS) in vacuum under a pressure of 25 MPa.The composites obtained under a sintering temperature of 1500 °C and time of 10 min exhibited optimum mechanical properties at room temperature in terms of fracture toughness and transverse rupture strength.MoSi_2 based composite with 6.0% CNTs(volume fraction) had the highest fracture toughness,transverse rupture strength and hardness,which were improved by about 25.7%,51.5% and 24.4% respectively,as compared with pure MoSi_2.A Mo_(4.8)Si_3C_(0.6) phase was detected in CNTs/MoSi_2 composites by both X-ray diffraction(XRD) method and microstructure analysis with scanning electron microscopy(SEM).It is believed that the fine grains and well dispersed small Mo_(4.8)Si_3C_(0.6) particles had led to a higher hardness and strength of CNTs/MoSi_2 composites because of their particle pullout,crack deflection and micro-bridging effects.
基金This work is partially granted by National Natural Science Foun-dation of China (No.50505018)Specialized Research Fund forthe Doctoral Program of Higher Education (No. 20030003024)China Postdoctoral Science Foundation Grant (No.2005038068).
文摘A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes, carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on micro- electrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.
文摘Microstructure and tribological properties of copper-based hybrid nanocomposites reinforced with copper coatedmultiwalled carbon nanotubes (MWCNTs) and silicon carbide (SiC) were studied. Carbon nanotube was varied from 1% to 4% withsilicon carbide content being fixed at 4%. The synthesis of copper hybrid nanocomposites involves ball milling, cold pressing andsintering followed by hot pressing. The developed hybrid nanocomposites were subjected to density, grain size, and hardness tests.The tribological performances of the nanocomposites were assessed by carrying out dry sliding wear tests using pin-on-steel disctribometer at different loads. A significant decrease in grain size was observed for the developed hybrid composites when comparedwith pure copper. An improvement of 80% in the micro-hardness of the hybrid nanocomposite has been recorded for 4% carbonnanotubes reinforced hybrid composites when compared with pure copper. An increase in content of CNTs in the hybridnanocomposites results in lowering of the friction coefficient and wear rates of hybrid nanocomposites.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50205006)
文摘An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and the carbon nanotube were very close, 30-60 V dc or ae was applied between them, and the carbon nanotube was divided and attached to the end of the silicon probe. Comparing with the arc discharge method, the new method need not coat the silicon probe with metal in advance, which can greatly reduce the fabrication difficulty and cost. The fabricated carbon nanotube probe exhibits the good property of high aspect ratio and can reflect the true topography more accurately than the silicon probe.