The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate est...The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.展开更多
Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon(SOC) sequestration.We sampled soils from a long-term(25 years) paddy experiment in subtropical China.The experiment...Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon(SOC) sequestration.We sampled soils from a long-term(25 years) paddy experiment in subtropical China.The experiment included eight treatments:(1) check,(2) PK,(3) NP,(4) NK,(5) NPK,(6) 7F:3M(N,P,K inorganic fertilizers+30% organic N),(7) 5F:5M(N,P,K inorganic fertilizers+50% organic N),(8) 3F:7M(N,P,K inorganic fertilizers+70% or-ganic N).Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment.The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha.The SOC densities of all fertilizer treatments were greater than that of the check.Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers.The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues.Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization.Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.展开更多
基金supported by National Science and Technology Support Project (Grant No. 2012BAD05B03–6)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05070403)National Natural Science Foundationof China (Grant No. 41171246)
文摘The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.
基金Project supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201003059)the National Natural Science Foundation of China (Nos. 21077088,40901142,51008107,and 31000296)+1 种基金the National Key Science and Technology Special Projects of Water Body Pollution Control and Management (Nos.2008ZX 07101-006 and 2008ZX 07528-005-003)the National Science and Technology Support Program of China (No.2011BAD41B01)
文摘Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon(SOC) sequestration.We sampled soils from a long-term(25 years) paddy experiment in subtropical China.The experiment included eight treatments:(1) check,(2) PK,(3) NP,(4) NK,(5) NPK,(6) 7F:3M(N,P,K inorganic fertilizers+30% organic N),(7) 5F:5M(N,P,K inorganic fertilizers+50% organic N),(8) 3F:7M(N,P,K inorganic fertilizers+70% or-ganic N).Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment.The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha.The SOC densities of all fertilizer treatments were greater than that of the check.Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers.The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues.Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization.Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.