This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene sphe...This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene spheres are assembled on porous disk substrate by vacuum filtration or evaporation. The polystyrene template is annealed slightly above the glass transition temperature in order to strengthen the colloidal crystal and ensure interconnection of the spheres so as to obtain porous materials with open structure. Following the treatment of hexdecyltrimethylammonium bromide, the polystyrene template is filled with silica colloidal solution, which solidifies in the cavities. Then the polystyrene particles are removed by calcination at 843K, leaving behind porous silica foam. Scanning electron microscopy images demonstrate that silica foam has uniform and open structured pores. Nickel particles were deposited on porous silica foam layer by the dipping method and porous carbon nano-fiber washcoat was prepared by catalytic decomposition of ethene over small nickel particles.展开更多
This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal contr...This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.展开更多
The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size ...The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size analyzer, carbon and sulfur analyzer, and X-ray photoelectron spectroscopy, etc. for the prepared composites were characterized and found the material is mainly crystalline structure of lithium iron phosphate, and lithium vanadium, wherein a small amount of impurities; finer particle size of the material, the particle size distribution is narrow and uniform, smooth particle surface, wrapping in good carbon composite with other materials prepared in comparison the case has a carbon content of about optimum conductivity. To assemble the material into a cell after the 0.1C, IC, 2C when and 5C, the first discharge capacity were 160,145,127 and 109 mA·h·g^-1, after 50 cycles, the discharge capacity of 162, respectively, 144,126 and 106 mA·h·g^-1, which showed good rate characteristics and cycle characteristics.展开更多
文摘This paper reports how a hairy layer of carbon nano-fibers can be prepared on the macro-porous silica foam produced by the sphere templating method. Firstly, three-dimensional close-packed crystals of polystyrene spheres are assembled on porous disk substrate by vacuum filtration or evaporation. The polystyrene template is annealed slightly above the glass transition temperature in order to strengthen the colloidal crystal and ensure interconnection of the spheres so as to obtain porous materials with open structure. Following the treatment of hexdecyltrimethylammonium bromide, the polystyrene template is filled with silica colloidal solution, which solidifies in the cavities. Then the polystyrene particles are removed by calcination at 843K, leaving behind porous silica foam. Scanning electron microscopy images demonstrate that silica foam has uniform and open structured pores. Nickel particles were deposited on porous silica foam layer by the dipping method and porous carbon nano-fiber washcoat was prepared by catalytic decomposition of ethene over small nickel particles.
文摘This article adopts the double decomposition method, select the appropriate experimental conditions and operation process, respectively add appropriate amount of sodium carboxymethyl cellulose (CMC) as crystal control agent to study the influence of crystalline of ultrafine calcium carbonate. The experimental results show that the different concentrations of CMC as crystal control agent on the morphology and crystal structure of calcium carbonate have obvious effect, which emerge morphology change from square to spherical, crystalline transition from calcite to aragonite. Thus, the results provide experimental data and theoretical basis for the use of different additives, and provide experimental basis and feasible solution for this kind of reaction.
文摘The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size analyzer, carbon and sulfur analyzer, and X-ray photoelectron spectroscopy, etc. for the prepared composites were characterized and found the material is mainly crystalline structure of lithium iron phosphate, and lithium vanadium, wherein a small amount of impurities; finer particle size of the material, the particle size distribution is narrow and uniform, smooth particle surface, wrapping in good carbon composite with other materials prepared in comparison the case has a carbon content of about optimum conductivity. To assemble the material into a cell after the 0.1C, IC, 2C when and 5C, the first discharge capacity were 160,145,127 and 109 mA·h·g^-1, after 50 cycles, the discharge capacity of 162, respectively, 144,126 and 106 mA·h·g^-1, which showed good rate characteristics and cycle characteristics.