期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Electrical resistance stability of high content carbon fiber reinforced cement composite 被引量:1
1
作者 杨再富 《Journal of Chongqing University》 CAS 2005年第1期19-22,共4页
The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced ... The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50 °C, increases relatively by 4% when ambient temperature decreases from 15 °C to ?20 °C, and decreases relatively by 13% with temperature increasing by 88 °C. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing. 展开更多
关键词 carbon fiber reinforced cement electrical resistance STABILITY ELECTROTHERMAL
下载PDF
Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load 被引量:4
2
作者 林铁松 贾德昌 +1 位作者 何培刚 王美荣 《Journal of Central South University》 SCIE EI CAS 2009年第6期881-886,共6页
Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up t... Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out. 展开更多
关键词 short carbon fiber Α-AL2O3 thermal-mechanical properties GEOPOLYMER thermal load
下载PDF
Improvement of the CFRP Mechanical Properties Using Taguchi Method to Optimize the Formation Conditions
3
作者 Chih-Cheng Yang Chih-Hsiang Liang 《Journal of Chemistry and Chemical Engineering》 2013年第10期958-961,共4页
Carbon fiber composites have high strength, high stiffness and light weight characteristics to apply to many fields, such as leisure, energy and transportation industries. The CFRP (carbon fiber reinforced polymers/p... Carbon fiber composites have high strength, high stiffness and light weight characteristics to apply to many fields, such as leisure, energy and transportation industries. The CFRP (carbon fiber reinforced polymers/plastics) composites made of carbon fibers as reinforcement and epoxy resins as matrix were prepared by drum winding process. Various parameters such as molding temperature, molding pressure and pressing time were selected as the pre-pregs were laminated to be the CFRP. The effects of fabricating parameters which affected the mechanical properties of CFRPs were analyzed by Taguchi method in this study. The results showed that molding temperature was the main factor to influence the mechanical properties of composites. 展开更多
关键词 Carbon fiber COMPOSITES Taguchi method molding temperature
下载PDF
Improvement of Impact Absorbed Energy of CFRPs on Adding the Nanoparticles into Epoxy Resins
4
作者 Tsung-Han Hsieh Chih-Hsiang Liang 《Journal of Chemistry and Chemical Engineering》 2014年第7期692-697,共6页
The present study investigates the effect of the addition of nanoparticles into epoxy resins as the matrix on the impact absorbed energy of CFRP (carbon fiber reinforced polymer). Impact absorbed energy is one of th... The present study investigates the effect of the addition of nanoparticles into epoxy resins as the matrix on the impact absorbed energy of CFRP (carbon fiber reinforced polymer). Impact absorbed energy is one of the main properties to evaluate the CFRP's performance for transportation and aerospace structures. Two types of nanoparticle, namely nanofibers and nano-silica beads, were added into the epoxy resin to improve the impact absorption capacity of the CFRP. Two modified additives and conventional epoxy resins were quantitatively compared. The impact test results showed that impact absorbed energy for nanofibers was higher than nano-silica beads, and nanofibers as the additive promoted about 11% of impact absorbed energy compared with neat epoxy resin. 展开更多
关键词 Carbon fiber nanoparticle additive impact absorbed energy.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部