A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy...A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained.展开更多
采用电耦合化学气相渗(Electric-coupling chemical vapor infiltration,E-CVI)工艺制备了C/C复合材料,系统研究了增强体类型、铺层方向对C/C复合材料力学性能、断裂行为和热物理性能的影响。结果表明,以碳毡作为增强体的C/C复合材料具...采用电耦合化学气相渗(Electric-coupling chemical vapor infiltration,E-CVI)工艺制备了C/C复合材料,系统研究了增强体类型、铺层方向对C/C复合材料力学性能、断裂行为和热物理性能的影响。结果表明,以碳毡作为增强体的C/C复合材料具有最差的力学性能;无纬布C/C和斜纹布C/C随着铺层秩序从0°/0°、0°/90°变化到0°/45°,其拉伸强度、弯曲强度和模量依次降低。在拉伸载荷下,0°/0°无纬布C/C的断裂行为主要表现为0°纤维束的拔出和断裂;0°/90°无纬布C/C表现为90°纤维层的界面脱粘和基体开裂,以及0°纤维束的拔出与断裂;0°/45°无纬布C/C表现为纤维与基体沿着±45°和90°纤维层的界面脱粘与基体开裂,以及±45°和0°纤维束的拔出。纤维预制体对C/C复合材料力学性能的影响主要取决于加载方向的纤维含量和取向、孔隙分布以及纤维束之间的界面结合。对于热物理性能,0°/90°无纬布C/C具有最小的热膨胀系数,碳毡C/C最大;0°/45°无纬布C/C具有最高的热导率,碳毡C/C最小;0°/90°无纬布C/C具有最大的TSR值。纤维预制体对C/C复合材料热物理性能的影响主要依赖于测量方向上纤维含量和取向,以及热解炭片层的取向。展开更多
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(2013AA8011004B)supported by National High Technology Research and Development Program of ChinaProject(CX201011)supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained.
文摘采用电耦合化学气相渗(Electric-coupling chemical vapor infiltration,E-CVI)工艺制备了C/C复合材料,系统研究了增强体类型、铺层方向对C/C复合材料力学性能、断裂行为和热物理性能的影响。结果表明,以碳毡作为增强体的C/C复合材料具有最差的力学性能;无纬布C/C和斜纹布C/C随着铺层秩序从0°/0°、0°/90°变化到0°/45°,其拉伸强度、弯曲强度和模量依次降低。在拉伸载荷下,0°/0°无纬布C/C的断裂行为主要表现为0°纤维束的拔出和断裂;0°/90°无纬布C/C表现为90°纤维层的界面脱粘和基体开裂,以及0°纤维束的拔出与断裂;0°/45°无纬布C/C表现为纤维与基体沿着±45°和90°纤维层的界面脱粘与基体开裂,以及±45°和0°纤维束的拔出。纤维预制体对C/C复合材料力学性能的影响主要取决于加载方向的纤维含量和取向、孔隙分布以及纤维束之间的界面结合。对于热物理性能,0°/90°无纬布C/C具有最小的热膨胀系数,碳毡C/C最大;0°/45°无纬布C/C具有最高的热导率,碳毡C/C最小;0°/90°无纬布C/C具有最大的TSR值。纤维预制体对C/C复合材料热物理性能的影响主要依赖于测量方向上纤维含量和取向,以及热解炭片层的取向。