A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to valu...A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to value the stability of probe. The affinities of SWNT to five common surfactants (SDS, DBS, Triton X-100, Tween-20 and Tween-80) were investigated by real-time fluorescence method. The effects of Mg^2+ and pH on the fluorescence intensity of self-assembled quenched sensor were performed. The fluorescent emission spectra were used to measure the responses of self-assembled quenched fluorescent of ssDNA/SWNTs to different concentration surfactant(Triton X-100). The FAM-DNA wrapped SWNTs probe was stable in a wide temperature range (5 ℃ to 80℃). The binding strength of surfactants and single-stranded DNA (ssDNA) on SWNTs surfaces was shown as follows: Triton X-100〉DBS〉Tween-20〉Tween-80〉ssDNA〉SDS, and the optimized reaction conditions included pH 7.4 and 10 mmol/L Mg2+. The fluorescence of FAM-ssDNA wrapped SWNTs was proportionally recovered as a result of adding different concentrations of Triton X- 100, which realizes the quantitative detection of Triton X- 100.展开更多
Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a b...Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.展开更多
Experimentally, the electron drag effect on carbon nanotube surface in flowing liquids was investigated. It was found that electric current could be generated in metallic carbon nanotubes immersed in the liquids. Carb...Experimentally, the electron drag effect on carbon nanotube surface in flowing liquids was investigated. It was found that electric current could be generated in metallic carbon nanotubes immersed in the liquids. Carbon nanotubes were synthesized on Si substrate by hot filament chemical vapor deposition. The experimental results showed that the flow-induced current on the surface of carbon nanotube films was closely depended on the flow rate, concentration, properties and temperature of liquids. The flow-induced current was increased with the increasing of flow rate, concentration and temperature of liquids. The obtained results were discussed in detail.展开更多
Piezoresistive effect of carbon nanotube films was investigated by athree-point bending test. Carbon nanotubes were synthesized by hot filament chemical vapordeposition. The experimental results showed that the carbon...Piezoresistive effect of carbon nanotube films was investigated by athree-point bending test. Carbon nanotubes were synthesized by hot filament chemical vapordeposition. The experimental results showed that the carbon nanotubes have a striking piezoresistiveeffect. The relative resistance was changed from 0 to 10.5 X 10^(-2) and 3. 25 X 10^(-2) for dopedand undoped films respectively at room temperature when the microstrain under stress from 0 to 500.The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change inthe band gap for the doped tubes and the defects for the undoped tubes.展开更多
Sulfonate groups were introduced to the surfaces of multiwalled carbon nanotubes by the radiation-induced graft polymerization of sodium 4-styrene sulfonate for the use as biosensor supports. Alcohol dehydrogenase was...Sulfonate groups were introduced to the surfaces of multiwalled carbon nanotubes by the radiation-induced graft polymerization of sodium 4-styrene sulfonate for the use as biosensor supports. Alcohol dehydrogenase was immobilized onto a sulfonated nanotube-supporting electrode with tris(2,2'-bipyridyl) ruthenium(II) complex to form an electrogenerated chemilluminesce sensor of alcohol. When it was used to detect alcohol in cyclic voltammetric measurements, the sensor showed the linearity over the range of 1.0 × 10^-4 M-5.0 ×10^-2 M, with a correlation coefficient of 0.992 and a detection limit of 1.9 ×10^-6 M. In electrogenerated chemilluminesce detection, it showed linearity over 5.0 × 10^-4 M-1.0 × 10^-2 M, with a correlation coefficient of 0.986 and a detection limit of 1.0 × 10^-6 M. The sensor was demonstrated to be able to detect ethanol in commercial drinks.展开更多
A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were pre...A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10-7 to 0.165×10-3 mol/L. The corresponding detection limit is 3.34×10-8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.展开更多
基金Projects (21075032, 21005026, 21135001) supported by the National Natural Science Foundation of ChinaProject (llJJ5012) supported by Hunan Provincial Natural Science Foundation, China
文摘A new biosensor platform was explored for detection of surfactant based on fluorescence changes from single strand DNA (ssDNA) and single-walled carbon nanotubes (SWNTs). Thermodynamics assay was performed to value the stability of probe. The affinities of SWNT to five common surfactants (SDS, DBS, Triton X-100, Tween-20 and Tween-80) were investigated by real-time fluorescence method. The effects of Mg^2+ and pH on the fluorescence intensity of self-assembled quenched sensor were performed. The fluorescent emission spectra were used to measure the responses of self-assembled quenched fluorescent of ssDNA/SWNTs to different concentration surfactant(Triton X-100). The FAM-DNA wrapped SWNTs probe was stable in a wide temperature range (5 ℃ to 80℃). The binding strength of surfactants and single-stranded DNA (ssDNA) on SWNTs surfaces was shown as follows: Triton X-100〉DBS〉Tween-20〉Tween-80〉ssDNA〉SDS, and the optimized reaction conditions included pH 7.4 and 10 mmol/L Mg2+. The fluorescence of FAM-ssDNA wrapped SWNTs was proportionally recovered as a result of adding different concentrations of Triton X- 100, which realizes the quantitative detection of Triton X- 100.
基金Funded by the National Natural Science Foundation of China (No. 60376032 and No. 90406024) and the Key Teacher Foundation of Chongqing University.
文摘Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.
文摘Experimentally, the electron drag effect on carbon nanotube surface in flowing liquids was investigated. It was found that electric current could be generated in metallic carbon nanotubes immersed in the liquids. Carbon nanotubes were synthesized on Si substrate by hot filament chemical vapor deposition. The experimental results showed that the flow-induced current on the surface of carbon nanotube films was closely depended on the flow rate, concentration, properties and temperature of liquids. The flow-induced current was increased with the increasing of flow rate, concentration and temperature of liquids. The obtained results were discussed in detail.
基金National Natural Science Foundation of China (60376032)
文摘Piezoresistive effect of carbon nanotube films was investigated by athree-point bending test. Carbon nanotubes were synthesized by hot filament chemical vapordeposition. The experimental results showed that the carbon nanotubes have a striking piezoresistiveeffect. The relative resistance was changed from 0 to 10.5 X 10^(-2) and 3. 25 X 10^(-2) for dopedand undoped films respectively at room temperature when the microstrain under stress from 0 to 500.The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change inthe band gap for the doped tubes and the defects for the undoped tubes.
文摘Sulfonate groups were introduced to the surfaces of multiwalled carbon nanotubes by the radiation-induced graft polymerization of sodium 4-styrene sulfonate for the use as biosensor supports. Alcohol dehydrogenase was immobilized onto a sulfonated nanotube-supporting electrode with tris(2,2'-bipyridyl) ruthenium(II) complex to form an electrogenerated chemilluminesce sensor of alcohol. When it was used to detect alcohol in cyclic voltammetric measurements, the sensor showed the linearity over the range of 1.0 × 10^-4 M-5.0 ×10^-2 M, with a correlation coefficient of 0.992 and a detection limit of 1.9 ×10^-6 M. In electrogenerated chemilluminesce detection, it showed linearity over 5.0 × 10^-4 M-1.0 × 10^-2 M, with a correlation coefficient of 0.986 and a detection limit of 1.0 × 10^-6 M. The sensor was demonstrated to be able to detect ethanol in commercial drinks.
基金Project(IRT0719) supported by the Program for Changjiang Scholars and Innovative Research Team in University, ChinaProjects (50978088, 51039001) supported by the National Natural Science Foundation of China+3 种基金Project(2009FJ1010) supported by the Hunan Key Scientific Research Program, ChinaProject(10JJ7005) supported by the Natural Science Foundation of Hunan Province, ChinaProjects(CX2009B080, CX2010B157) supported by the Hunan Provincial Innovation Foundation For PostgraduateProject supported by the Fundamental Research Funds for the Central Universities, Hunan University, China
文摘A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10-7 to 0.165×10-3 mol/L. The corresponding detection limit is 3.34×10-8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.