In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aerug...In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.展开更多
We recognize the stochastic collisions of dopamine contained phospholipid vesicle on carbon fiber nanoelectrode, extending the observation of discrete collision events on nanoelectrode to biologically relevant analyte...We recognize the stochastic collisions of dopamine contained phospholipid vesicle on carbon fiber nanoelectrode, extending the observation of discrete collision events on nanoelectrode to biologically relevant analytes. To decrease noise interference to the technique, the dimensions of nanoelectrode was systematically investigated and optimized. Scanning electron microscopy(SEM) further supported the comparable sizes of nanoelectrode and vesicles(~100 nm in diameter). Vesicles collision and rupture on the surface of nanoelectrode led to the dopamine release from vesicles, which could be electrochemically oxidized to dopamine-o-quinone and detected via voltammetry. The comparable size of the nanoelectrode with vesicles and fast voltammetry allowed differentiation of single collision events from the current magnitudes and peak widths in the electrochemical collision experiments, which shows the efficacy of the method to characterize vesicle samples. This work provides a foundation upon which quantitative sensor technology might be built for the detection of dopamine contained vesicles with high spatial and temporal resolution.展开更多
基金Project(035703011) supported by the Scientific Research Double Support Program of SICAU,China
文摘In order to explore a novel and potential method using carbon nanotubes (CNTs) for controlling blue-green algal blooms efficiently in future, effects of single-walled carbon nanotubes (SWCNTs) on Microcystis aeruginosa growth control were investigated under lab cultured conditions. Related physiological changes were tested involving several important enzyme of antioxidant defense system (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondiadehyde (MDA), photosynthetic pigments, protein, soluble sugar and extracellular microcystin toxins (MC-LR)). Algal cell density was significantly inhibited by SWCNTs at high concentration (〉5.00 mg/L), and the inhibition rate was dose-dependent. For treatment with 100 mg/L SWCNTs, the inhibitory rates even reached above 90%. 96 h IC50 was determined as 22 mg/L. Antioxidant enzyme activities were dramatically dropped with increasing lipid peroxidation at higher SWCNTs concentration, indicating intracellular generation of reactive oxygen species (ROS) and oxidative stress damage in algae. Reduction of photosynthetic pigments, soluble sugar and protein contents suggested that SWCNTs may severely ruin algal photosynthesis system, destroy the metabolism-related structure of cell, and thus lead to negative physiological status in M. aeruginosa. Besides, SWCNTs can effectively decrease the amount of extracellular microcystins in culture medium.
基金supported by the National Natural Science Foundation of China(21422508,31470960)Chinese Academy of Sciencessupport by the Deanship of Scientific Research,College of Science Research Center at King Saud University
文摘We recognize the stochastic collisions of dopamine contained phospholipid vesicle on carbon fiber nanoelectrode, extending the observation of discrete collision events on nanoelectrode to biologically relevant analytes. To decrease noise interference to the technique, the dimensions of nanoelectrode was systematically investigated and optimized. Scanning electron microscopy(SEM) further supported the comparable sizes of nanoelectrode and vesicles(~100 nm in diameter). Vesicles collision and rupture on the surface of nanoelectrode led to the dopamine release from vesicles, which could be electrochemically oxidized to dopamine-o-quinone and detected via voltammetry. The comparable size of the nanoelectrode with vesicles and fast voltammetry allowed differentiation of single collision events from the current magnitudes and peak widths in the electrochemical collision experiments, which shows the efficacy of the method to characterize vesicle samples. This work provides a foundation upon which quantitative sensor technology might be built for the detection of dopamine contained vesicles with high spatial and temporal resolution.