The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damage...Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.展开更多
This article studied experimentally the effect of multi-wall carbon nanotubes (MWCNTs) on the thermo physical properties of ionic liquid-based nanofluids. The nanofluids were composed of ionic liquid, 1-ethyl-3- met...This article studied experimentally the effect of multi-wall carbon nanotubes (MWCNTs) on the thermo physical properties of ionic liquid-based nanofluids. The nanofluids were composed of ionic liquid, 1-ethyl-3- methylimidazolium diethylphosphate [EMIM][DEP], or its aqueous solution[EMIM][DEP](1) + H20(2) and MWCNTs without any surfactants. The thermal conductivity, viscosity and density of the nanofluids were mea- sured experimentally. The effects of the mass fraction of MWCNTs, temperature and the mole fraction of water on the thermo physical properties of nanofluids were studied. Results show that the thermal conductivity of nanofluids increases within the range of 1.3%-9.7% compared to their base liquids, and have a well linear depen- dence on temperature. The viscosity and density of the nanofluids exhibit a remarkable increase compared with those of the base liquids. Finally, the correlation of the effective thermal conductivity and viscosity of the nanofluids was made using the models in the literatures.展开更多
Density functional theory (DFT) is used to calculate adsorption of ethane molecules in single walled carbon nanotubes. A compari-son of DFT calculations and grand canonical ensemble Monte Carlo (GCMC) simulations is m...Density functional theory (DFT) is used to calculate adsorption of ethane molecules in single walled carbon nanotubes. A compari-son of DFT calculations and grand canonical ensemble Monte Carlo (GCMC) simulations is made first and the two methods are in good agree-ment. Adsorption isotherms and structures of ethane molecules inside the tubes have been studied by DFT for the nanotubes of diameters 0.954, 2.719 and 4.077 nm at 157 K and ambient temperature, 300 K. By using the grand potential, the positions of phase transitions are exactly lo-cated, and the effect of temperature and tube diameter on phase transitions and adsorption is discussed. We found that lowering temperature and increasing the pore size of several nanometer is preferable for the ethane adsorption when temperature is in the range of 157 K—300 K and op-erating pressure reaches several MPa. Layering transitions and capillary condensations are observed at 157 K in two larger pore diameters, while these phase transitions disappear or the hysteres is loops become very narrow at 300 K.展开更多
Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to elec...Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.展开更多
Under the framework of Maxwell-Garnett (M-G) model, the optical and electrical properties of singlewalled carbon naotube (SWCNT), double-walled carbon nanotube (DWCNT) and hydrogen-doped carbon nanotube (H-dope...Under the framework of Maxwell-Garnett (M-G) model, the optical and electrical properties of singlewalled carbon naotube (SWCNT), double-walled carbon nanotube (DWCNT) and hydrogen-doped carbon nanotube (H-doped GNT) in terahertz (THz) region have been investigated. It has been found that as frequency increases the loss tangent and conductivity show a peak. The loss tangent and conductivity of SWCNT is larger than that of DWCNT and H-doped CNT. The loss tangent and conductivity increase with the increases of filling factor and the decreases of geometrical factor.展开更多
Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidel...Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.展开更多
Optical excitations of the hybrids,which are assembled by coupling single-walled carbon nanotubes(SWCNTs)with organic molecules through van der Waals interactions,are studied using ab initio manybody Green’s function...Optical excitations of the hybrids,which are assembled by coupling single-walled carbon nanotubes(SWCNTs)with organic molecules through van der Waals interactions,are studied using ab initio manybody Green’s function theory.We take the semiconducting(7,0)SWCNT,the squarylium and oligothiophene molecules as the example.The E11 and E22 absorption peaks of the(7,0)tube can be redshifted by tens of meV.Most importantly,the lowest dark exciton of the(7,0)tube at the lower-energy side of E11 can be brightened by the interaction between the nanotube and molecules.Position of this new satellite absorption peak is influenced by the type of adsorbed molecule.These findings may be useful for tuning the emission energy and emission efficiency of CNTs.展开更多
This paper relates to highly dispersed supported Pd/MWCNTs and Fd/a-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts pre...This paper relates to highly dispersed supported Pd/MWCNTs and Fd/a-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts prepared by bio- logical reduction method and chemical method, respectively, were investigated using XRD, TEM and specific surface char- acterization methods. The catalytic properties of catalysts were studied through activity evaluation means. The test results showed that the catalysts prepared by biological method were characteristic of small Pd nanoparticle size, good dispersion and low agglomeration, while possessing a high activity and stability in styrene hydrogenation reaction in comparison with catalysts prelgared via the chemical method.展开更多
We study the binding of molecular oxygen to a (5, 0) single walled SiC nanotube, by means of density functional calculations. The center of a hexagon of silicon and carbon atoms in sites on SiCNT surfaces is the mos...We study the binding of molecular oxygen to a (5, 0) single walled SiC nanotube, by means of density functional calculations. The center of a hexagon of silicon and carbon atoms in sites on SiCNT surfaces is the most stable adsorption site for 02 molecule, with a binding energy of -38.22 eV and an average Si-O binding distance of 1.698 A. We have also tested the stability of the 02-adsorbed SiCNT/CNT with ab initio molecular dynamics simulation which have been carried out at room temperature. Furthermore, the adsorption of 02 on the single walled carbon nanotubes has been investigated. Our first-principles calculations predict that the 02 adsorptive capability of silicon carbide nanotubes is much better than that of carbon nanotubes. This might have potential for gas detection and energy storage.展开更多
The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to ...The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared.We also investigated the role of the structural defects on the adsorption capability of the SWCNTs.We could observe larger adsorption energies for the larger diameters semiconducting CNTs,while the story is paradoxical for the metallic CNTs.The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles.Finally,the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon,hexagon,and heptagon sites in the tube surface.We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs.The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption.Consequently,one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.展开更多
Well crystallized niobium-doped TiO; nanotube arrays (TiNbO-NT) were successfully synthesized via the anodization of titanium/niobium alloy sheets, followed with a heat treatment at 550 ℃ for 2 h. Morphology analys...Well crystallized niobium-doped TiO; nanotube arrays (TiNbO-NT) were successfully synthesized via the anodization of titanium/niobium alloy sheets, followed with a heat treatment at 550 ℃ for 2 h. Morphology analysis results demonstrated that both the titanium/niobium alloy microstructure and the dissolution strength of electrolyte played major roles in the formation of nanotube structure. A single-phase microstructure was more favorable to the formation of uniform nanotube arrays, while modulating the dissolution strength of electrolyte was required to obtain nanotube arrays from the alloys with multi-phase microstructures. X-ray diffraction (XRD) and X-ray photoelectron (XPS) analysis results clearly demonstrated that niobium dopants (Nb^5+) were successfully doped into TiO2 anatase lattice by substituting Ti^4+ in this approach.展开更多
Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell ...Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell model,explicit expressions are derived for the bending solutions.To extract the proper values of nonlocal scale parameter,we have made molecular dynamics(MD) simulations for various radii and lengths of armchair and zigzag CNTs,the results of which are matched with those of nonlocal continuum model.It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs,which is comparable with the results of MD simulations.Moreover,exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained.The results show that nonlocal scale parameter is independent of the length of CNTs,and dependent on the radius of CNTs.展开更多
Spinning carbon nanotube (CNT) yarns from super-aligned carbon nanotube (SACNT) arrays is a promising approach to fabricate high-strength fibers. However the reported tensile strengths of the as-prepared fibers ar...Spinning carbon nanotube (CNT) yarns from super-aligned carbon nanotube (SACNT) arrays is a promising approach to fabricate high-strength fibers. However the reported tensile strengths of the as-prepared fibers are far below that of an individual CNT. It is therefore still a challenge to improve their mechanical strengths. Here we report that the tensile strengths and Young's moduli can be further improved to 2.2 GPa and 200 GPa respectively, if we first treat the SACNT array with oxygen plasma by using a reactive ion etching (RIE) facility, then dry spin yarns from it and make composite fibers with polyvinyl alcohol. According to the experimental results obtained using scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), the improvement is attributed to the oxygen RIE process, as it can create functional groups on the outer walls of CNTs and thus improve the interaction between the CNTs and the polymer molecules.展开更多
The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and exp...The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and experimentally. This interfacial layer, when illuminated by light, behaves as an optical dipole lattice and contributes an instantaneous near field which enhances the local field on neighboring atoms, molecules, or nanomaterials, which in turn may lead to enhanced Rayleigh scattering, Raman scattering, and fluorescence. The theory of this interface dipole enhanced effect (IDEE) predicts that a smaller distance between the nanomaterials and the plane of the interracial layer, or a larger ratio of the dielectric constants of the interfacial layer to the surrounding medium, will result in a larger field enhancement factor. This prediction is further experimentally verified by several implementations of enhanced Rayleigh scattering of SWCNTs as well as in situ Rayleigh scattering of gradually charged SWCNTs. The interface dipole enhanced Rayleigh scattering not only enables true-color real-time imaging of nanomaterials, but also provides an effective means to peer into the subtle interfacial phenomena.展开更多
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金Project(91026018)supported by the National Natural Science Foundation of ChinaProject(20110111110015)supported by the Doctoral Fund of Ministry of Education of China
文摘Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.
基金Supported by the National Natural Science Foundation of China(51376036)
文摘This article studied experimentally the effect of multi-wall carbon nanotubes (MWCNTs) on the thermo physical properties of ionic liquid-based nanofluids. The nanofluids were composed of ionic liquid, 1-ethyl-3- methylimidazolium diethylphosphate [EMIM][DEP], or its aqueous solution[EMIM][DEP](1) + H20(2) and MWCNTs without any surfactants. The thermal conductivity, viscosity and density of the nanofluids were mea- sured experimentally. The effects of the mass fraction of MWCNTs, temperature and the mole fraction of water on the thermo physical properties of nanofluids were studied. Results show that the thermal conductivity of nanofluids increases within the range of 1.3%-9.7% compared to their base liquids, and have a well linear depen- dence on temperature. The viscosity and density of the nanofluids exhibit a remarkable increase compared with those of the base liquids. Finally, the correlation of the effective thermal conductivity and viscosity of the nanofluids was made using the models in the literatures.
基金Supported by the State Key Fundamental Research Plan of China (No.G2000048010) and the Post Doctor Science Foundation of China.
文摘Density functional theory (DFT) is used to calculate adsorption of ethane molecules in single walled carbon nanotubes. A compari-son of DFT calculations and grand canonical ensemble Monte Carlo (GCMC) simulations is made first and the two methods are in good agree-ment. Adsorption isotherms and structures of ethane molecules inside the tubes have been studied by DFT for the nanotubes of diameters 0.954, 2.719 and 4.077 nm at 157 K and ambient temperature, 300 K. By using the grand potential, the positions of phase transitions are exactly lo-cated, and the effect of temperature and tube diameter on phase transitions and adsorption is discussed. We found that lowering temperature and increasing the pore size of several nanometer is preferable for the ethane adsorption when temperature is in the range of 157 K—300 K and op-erating pressure reaches several MPa. Layering transitions and capillary condensations are observed at 157 K in two larger pore diameters, while these phase transitions disappear or the hysteres is loops become very narrow at 300 K.
基金supported by the National Natural Science Foundation of China(21576299,21576300)Guangzhou Science and Technology Project(201607010104,201707010079)+3 种基金Science and Technology Planning Project of Guangdong Province(2017A050501009)the National Key Research and Development Program of China(2016YFB0101204)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2016TQ03N322)the fundamental Research Funds for Central Universities(17lgzd14)~~
文摘Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.
文摘Under the framework of Maxwell-Garnett (M-G) model, the optical and electrical properties of singlewalled carbon naotube (SWCNT), double-walled carbon nanotube (DWCNT) and hydrogen-doped carbon nanotube (H-doped GNT) in terahertz (THz) region have been investigated. It has been found that as frequency increases the loss tangent and conductivity show a peak. The loss tangent and conductivity of SWCNT is larger than that of DWCNT and H-doped CNT. The loss tangent and conductivity increase with the increases of filling factor and the decreases of geometrical factor.
文摘Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.
基金supported by the National Natural Science Foundation of China(No.21833004)。
文摘Optical excitations of the hybrids,which are assembled by coupling single-walled carbon nanotubes(SWCNTs)with organic molecules through van der Waals interactions,are studied using ab initio manybody Green’s function theory.We take the semiconducting(7,0)SWCNT,the squarylium and oligothiophene molecules as the example.The E11 and E22 absorption peaks of the(7,0)tube can be redshifted by tens of meV.Most importantly,the lowest dark exciton of the(7,0)tube at the lower-energy side of E11 can be brightened by the interaction between the nanotube and molecules.Position of this new satellite absorption peak is influenced by the type of adsorbed molecule.These findings may be useful for tuning the emission energy and emission efficiency of CNTs.
文摘This paper relates to highly dispersed supported Pd/MWCNTs and Fd/a-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts prepared by bio- logical reduction method and chemical method, respectively, were investigated using XRD, TEM and specific surface char- acterization methods. The catalytic properties of catalysts were studied through activity evaluation means. The test results showed that the catalysts prepared by biological method were characteristic of small Pd nanoparticle size, good dispersion and low agglomeration, while possessing a high activity and stability in styrene hydrogenation reaction in comparison with catalysts prelgared via the chemical method.
文摘We study the binding of molecular oxygen to a (5, 0) single walled SiC nanotube, by means of density functional calculations. The center of a hexagon of silicon and carbon atoms in sites on SiCNT surfaces is the most stable adsorption site for 02 molecule, with a binding energy of -38.22 eV and an average Si-O binding distance of 1.698 A. We have also tested the stability of the 02-adsorbed SiCNT/CNT with ab initio molecular dynamics simulation which have been carried out at room temperature. Furthermore, the adsorption of 02 on the single walled carbon nanotubes has been investigated. Our first-principles calculations predict that the 02 adsorptive capability of silicon carbide nanotubes is much better than that of carbon nanotubes. This might have potential for gas detection and energy storage.
文摘The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared.We also investigated the role of the structural defects on the adsorption capability of the SWCNTs.We could observe larger adsorption energies for the larger diameters semiconducting CNTs,while the story is paradoxical for the metallic CNTs.The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles.Finally,the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon,hexagon,and heptagon sites in the tube surface.We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs.The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption.Consequently,one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.
基金supported by the National Natural Science Foundation of China (Grant No. 51102246)the Knowledge Innovation Program of Institute of Metal Research, Chinese Academy of Sciences (Grant No.Y0N5A111A1)the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No.Y2N5711171)
文摘Well crystallized niobium-doped TiO; nanotube arrays (TiNbO-NT) were successfully synthesized via the anodization of titanium/niobium alloy sheets, followed with a heat treatment at 550 ℃ for 2 h. Morphology analysis results demonstrated that both the titanium/niobium alloy microstructure and the dissolution strength of electrolyte played major roles in the formation of nanotube structure. A single-phase microstructure was more favorable to the formation of uniform nanotube arrays, while modulating the dissolution strength of electrolyte was required to obtain nanotube arrays from the alloys with multi-phase microstructures. X-ray diffraction (XRD) and X-ray photoelectron (XPS) analysis results clearly demonstrated that niobium dopants (Nb^5+) were successfully doped into TiO2 anatase lattice by substituting Ti^4+ in this approach.
基金supported by the National Natural Science Foundation of China (Grant No. 11132002)Guangdong Province (Grant No.10151064101000062)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110172110031)
文摘Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell model,explicit expressions are derived for the bending solutions.To extract the proper values of nonlocal scale parameter,we have made molecular dynamics(MD) simulations for various radii and lengths of armchair and zigzag CNTs,the results of which are matched with those of nonlocal continuum model.It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs,which is comparable with the results of MD simulations.Moreover,exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained.The results show that nonlocal scale parameter is independent of the length of CNTs,and dependent on the radius of CNTs.
文摘Spinning carbon nanotube (CNT) yarns from super-aligned carbon nanotube (SACNT) arrays is a promising approach to fabricate high-strength fibers. However the reported tensile strengths of the as-prepared fibers are far below that of an individual CNT. It is therefore still a challenge to improve their mechanical strengths. Here we report that the tensile strengths and Young's moduli can be further improved to 2.2 GPa and 200 GPa respectively, if we first treat the SACNT array with oxygen plasma by using a reactive ion etching (RIE) facility, then dry spin yarns from it and make composite fibers with polyvinyl alcohol. According to the experimental results obtained using scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), the improvement is attributed to the oxygen RIE process, as it can create functional groups on the outer walls of CNTs and thus improve the interaction between the CNTs and the polymer molecules.
文摘The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and experimentally. This interfacial layer, when illuminated by light, behaves as an optical dipole lattice and contributes an instantaneous near field which enhances the local field on neighboring atoms, molecules, or nanomaterials, which in turn may lead to enhanced Rayleigh scattering, Raman scattering, and fluorescence. The theory of this interface dipole enhanced effect (IDEE) predicts that a smaller distance between the nanomaterials and the plane of the interracial layer, or a larger ratio of the dielectric constants of the interfacial layer to the surrounding medium, will result in a larger field enhancement factor. This prediction is further experimentally verified by several implementations of enhanced Rayleigh scattering of SWCNTs as well as in situ Rayleigh scattering of gradually charged SWCNTs. The interface dipole enhanced Rayleigh scattering not only enables true-color real-time imaging of nanomaterials, but also provides an effective means to peer into the subtle interfacial phenomena.