High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
This work represents a 3 D numerical study of the effects of carbon nanotube(CNT)-water nanofluids on the double diffusive convection inside the triangular pyramid solar still.This numerical investigation is performed...This work represents a 3 D numerical study of the effects of carbon nanotube(CNT)-water nanofluids on the double diffusive convection inside the triangular pyramid solar still.This numerical investigation is performed for wide ranges of governing parameters such as buoyancy ratio(-10≤N≤0),volumetric fraction of nanoparticles(0≤Φ≤0.05) and Rayleigh number(10^(3)≤Ra≤10^(5)).The results are presented in terms of flow structure,temperature field,heat and mass transfer rates variations.It was found that the buoyancy ratio can be considered as an optimizing parameter for the heat and mass transfer,and the use of CNT has a positive effect on the solar still performances.展开更多
A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are consi...A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field.展开更多
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (41- PRFA-P-23)。
文摘This work represents a 3 D numerical study of the effects of carbon nanotube(CNT)-water nanofluids on the double diffusive convection inside the triangular pyramid solar still.This numerical investigation is performed for wide ranges of governing parameters such as buoyancy ratio(-10≤N≤0),volumetric fraction of nanoparticles(0≤Φ≤0.05) and Rayleigh number(10^(3)≤Ra≤10^(5)).The results are presented in terms of flow structure,temperature field,heat and mass transfer rates variations.It was found that the buoyancy ratio can be considered as an optimizing parameter for the heat and mass transfer,and the use of CNT has a positive effect on the solar still performances.
基金funded by Scientific Research Deanship at University of Ha ’ il-Saudi Arabia through project number BA-2019。
文摘A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field.