期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Numerical study of directional heat transfer in composite materials via controllable carbon fiber distribution
1
作者 SHI Lei HUANG Cun-wen +5 位作者 YE Jian-ling WEN Shuang LIU Su-ping LI Fen-qiang ZHOU Tian SUN Zhi-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1945-1955,共11页
Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a ser... Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a series of simulations to investigate the heat transfer properties of CF/PA12 were conducted in this study.Firstly,by building two-and three-dimensional models,the effects of the porosity,carbon fiber content,and arrangement on the heat transfer of CF/PA12 were examined.A validation of the simulation model was carried out and the findings were consistent with those of the experiment.Then,the simulation results using the above models showed that within the volume fraction from 0% to 28%,the thermal conductivity of CF/PA12 increased greatly from 0.0242 W/(m·K)to 10.8848 W/(m·K).The increasing porosity had little influence on heat transfer characteristic of CF/PA12.The direction of the carbon fiber arrangement affects the heat transfer impact,and optimal outcomes were achieved when the heat flow direction was parallel to the carbon fiber.This research contributes to improving the production methods and broadening the application scenarios of composite materials. 展开更多
关键词 heat transfer thermal conductivity carbon fiber-based composite
下载PDF
Linear and Nonlinear Ultrasonic Detections of Impact Damage in Composite Laminate
2
作者 WANG Rong WU Qi +1 位作者 ZHANG Guitao XIA Guochun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期599-608,共10页
The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear a... The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity. 展开更多
关键词 carbon fiber reinforced plastic(CFRP) nonlinear ultrasonic Lamb wave impact damage nondestructive testing
下载PDF
Research on High-Velocity Impact Damage Monitoring Method of CFRP Based on Guided Wave
3
作者 WANG Yang YANG Xiaofei +1 位作者 QIU Lei YUAN Shenfang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期60-69,共10页
Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly cons... Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly considers the impact resistance of the material,and lacks the high-velocity impact damage monitoring research of CFRP.To solve this problem,a real high-velocity impact damage experiment and structural health monitoring(SHM)method of CFRP plate based on piezoelectric guided wave is proposed.The results show that CFRP has obvious perforation damage and fiber breakage when high-velocity impact occurs.It is also proved that guided wave SHM technology can be effectively used in the monitoring of such damage,and the damage can be reflected by quantifying the signal changes and damage index(DI).It provides a reference for further research on guided wave structure monitoring of high/hyper-velocity impact damage of CFRP. 展开更多
关键词 guided waves structural health monitoring(SHM) carbon fiber reinforced polymer(CFRP) high-velocity impact
下载PDF
CFRP加固损伤钢筋混凝土梁的性能试验 被引量:15
4
作者 陈凤山 赵国藩 王兆忠 《建筑科学与工程学报》 CAS 2008年第4期116-122,共7页
为研究碳维纤复合材料(CFRP)加固初始损伤钢筋混凝土梁的性能,进行了17片试验梁的加载试验。结果表明:腐蚀损伤、预加载损伤对CFRP加固试验梁的性能影响不大;同时黏贴纵、横向CFRP加固对试验梁的极限承载力提高效果显著;CFRP的加固作用... 为研究碳维纤复合材料(CFRP)加固初始损伤钢筋混凝土梁的性能,进行了17片试验梁的加载试验。结果表明:腐蚀损伤、预加载损伤对CFRP加固试验梁的性能影响不大;同时黏贴纵、横向CFRP加固对试验梁的极限承载力提高效果显著;CFRP的加固作用主要体现在梁开裂以后的工作阶段;有腐蚀和预加载损伤的CFRP加固试验梁的荷载-挠度曲线接近双直线的折线形状;梁的承载试验结果略高于按照中国《碳纤维片材加固修复混凝土结构技术规程》(CECS 146:2003)中抗剪承载力公式计算的结果;出于安全考虑,CFRP加固损伤钢筋混凝土梁抗剪承载力公式可参照该规程,并引入合适的折减系数。 展开更多
关键词 碳维纤复合材料 腐蚀开裂 加载预裂 钢筋混凝土梁
下载PDF
Effect of specific pressure on fabrication of 2D-C_f/Al composite by vacuum and pressure infiltration 被引量:11
5
作者 马玉钦 齐乐华 +2 位作者 郑武强 周计明 鞠录岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1915-1921,共7页
Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in... Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy. 展开更多
关键词 specific pressure vacuum and pressure infiltration C/Al composite carbon fiber PROPERTIES
下载PDF
Threshold pressure and infiltration behavior of liquid metal into fibrous preform 被引量:2
6
作者 关俊涛 齐乐华 +2 位作者 刘健 周计明 卫新亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3173-3179,共7页
A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy... A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained. 展开更多
关键词 metal matrix composites carbon fiber Mg PERFORM INFILTRATION threshold pressure infiltration rate
下载PDF
Impact Responses of the Carbon Fiber Fabric Reinforced Composites 被引量:1
7
作者 姜春兰 李明 +1 位作者 张庆明 马晓青 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期225-230,共6页
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay... To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) composite IMPACT Lagrange analysis
下载PDF
Study on mechanical properties of composite materials by in-situ tensile test
8
作者 黄海波 李凡 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期49-52,共4页
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p... The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface. 展开更多
关键词 Cracks Fiber reinforced materials Interfaces (materials) Mechanical properties MICROSTRUCTURE Scanning electron microscopy Silicon carbide Tensile testing
下载PDF
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
9
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite Cf/Al composite COATING WETTABILITY mechanical properties
下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
10
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 carbon fiber reinforced polymer steel plate composite strengthening technique reinforced concrete beams fatigue stiffness
下载PDF
Mechanism of improving ductility of high strength concrete T-section beam confined by CFRP sheet subjected to flexural loading 被引量:4
11
作者 王苏岩 王泽源 《Journal of Central South University》 SCIE EI CAS 2013年第1期246-255,共10页
For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-s... For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented. 展开更多
关键词 high strength concrete fiber reinforced polymer T-section BEAM DUCTILITY plastic hinge
下载PDF
Collapse behavior evaluation of hybrid thin-walled member by stacking condition 被引量:2
12
作者 Kil-Sung LEE Hyeon-Kyeong SEO +3 位作者 Yong-June YANG Woo-Chae HWANG Kwang-Hee IM In-Young YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期135-140,共6页
The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmen... The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number. 展开更多
关键词 collapse behavior aluminum and CFRP hybrid thin-walled member stacking condition
下载PDF
Carbonaceous mesophase spherule/activated carbon composite as anode materials for super lithium ion capacitors 被引量:2
13
作者 杨娟 周向阳 +1 位作者 李劼 娄世菊 《Journal of Central South University》 SCIE EI CAS 2011年第4期972-977,共6页
A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the a... A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established. 展开更多
关键词 super lithium ion capacitor carbonaceous mesophase spherule active carbon compound anode
下载PDF
Delamination Damage Detection in Laminated Composite by LDR-Based Multi-frequency Method 被引量:1
14
作者 DENG Xingyu QIU Jinhao +1 位作者 JI Hongli ZHANG Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期28-34,共7页
Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The... Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials. 展开更多
关键词 carbon fibre reinforced polymer local defect resonance(LDR) MULTI-FREQUENCY non-destructive testing
下载PDF
Experimental Research on Behavior of Composite Material Projectile Penetrating Concrete Target 被引量:2
15
作者 钟卫洲 宋顺成 +4 位作者 张方举 张青平 黄西成 李思忠 卢永刚 《Transactions of Tianjin University》 EI CAS 2008年第6期430-433,共4页
Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axi... Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder. 展开更多
关键词 composite material PENETRATING carbon fiber CONCRETE
下载PDF
Preparation of three-dimensional braided carbon fiber reinforced mullite composites from a sol with high solid content 被引量:1
16
作者 Wei ZHANG Qing-song MA +1 位作者 Ke-wei DAI Wei-guo MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2249-2255,共7页
To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as... To prepare the three-dimensional braided carbon fiber reinforced mullite (3D C/mullite) composites, an Al2O3-SiO2 solwith a solid content of 20% (mass fraction) and an Al2O3/SiO2 mass ratio of 2:1 was selected as the raw material. Characteristics andmullitization of the sol were analyzed throughly. It is found that the formation of mullite is basically completed at 1300℃ and thegel powders exhibit favorable sintering shrinkage. The 3D C/mullite composites without interfacial coating were fabricated throughthe route of vacuum impregnation-drying-heat treatment. Satisfied mechanical properties with a flexural strength of 241.2 MPa anda fracture toughness of 10.9 MPa·m1/2are obtained although the total porosity reaches 26.0%. Oxidation resistances of the compositesat 1200, 1400 and 1600 ℃ were investigated. Due to the further densification of matrix, the 3D C/mullite composites show tiny massloss and their mechanical properties are well retained after oxidation at 1600 ℃ for 30 min. 展开更多
关键词 carbon fiber reinforced mullite composites Al2O3-SiO2 sol mechanical properties oxidation resistance
下载PDF
Experimental study on slender reinforced concrete columns wrapped with CFRP 被引量:1
17
作者 HU Zhongjun NIE Lei +1 位作者 PAN Jinglong XU Tian 《Global Geology》 2009年第4期226-229,共4页
By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitt... By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers. 展开更多
关键词 carbon fiber reinforced plastics reinforced concrete column stability coefficient slenderness ratio
下载PDF
Parameters of static response of carbon fiber reinforced polymer(CFRP) suspension cables
18
作者 王立彬 吴勇 Mohammad Noori 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3123-3132,共10页
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co... The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically. 展开更多
关键词 suspension bridge carbon fiber reinforced polymer (CFRP) main cable steel suspension cable static response
下载PDF
Synergistic effect of a new wedge-bond-type anchor for CFRP tendons
19
作者 谢桂华 刘荣桂 +2 位作者 陈蓓 李明君 石天罡 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2260-2266,共7页
In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by th... In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by the clamping segment of anchor was studied. Taking the deformation of all parts in clamping segment in the transverse direction into consideration, the calculation formula for the increment of anchoring force was proposed based on the linear elastic hypotheses. The proposed model is verified by experiments and conclusions are drawn that the anchoring force is influenced mainly by the inclination angle of clamping pieces, the length of clamping part and the thickness of bonding medium. Especially, the thickness of bonding medium should be lowered in design to improve the synergistic effect of anchors. 展开更多
关键词 carbon fiber reinforced polymer ANCHOR wedge-bond-type synergistic effect elastic mechanics
下载PDF
Conductivity Inversion of Unidirectional CFRP Laminates Using Eddy Current Testing
20
作者 SHEN Wei JI Hongli +1 位作者 QIU Jinhao XU Xiaojuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期35-40,共6页
Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relat... Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data. 展开更多
关键词 carbon fiber reinforced polymer(CFRP) eddy current testing(ECT) conductivity inversion forward model
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部