Definition of coefficient of carbon transfer in European Standard (EN 10052) is presented as: "Mass of carbon transferred from carburizing medium into the steel, per unit surface area per second for a unit differ...Definition of coefficient of carbon transfer in European Standard (EN 10052) is presented as: "Mass of carbon transferred from carburizing medium into the steel, per unit surface area per second for a unit difference between the carbon potential, and actual surface carbon content". In this paper, a model is presented of carbon transfer from endothermic atmospheres to carbon steel. The carbon transfer coefficient values were determined experimentally by the foil technique and on specimens, taking into account the following parameters: chemical composition of atmospheres, carbon potential, temperature and time of the carburizing process. Some examples of the variation of the carbon transfer coefficient for two steps of the carburizing process, including soaking before quenching, are given, based on results obtained. The effect of carbon transfer coefficient on carbon content at the steel surface is given.展开更多
Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, ...Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O7-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.51g/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.展开更多
Techno-economic development of chemical looping combustion (CLC) process has been one of the most pursued research areas of the present decade due to its ability to reduce carbon foot print during utilization of coa...Techno-economic development of chemical looping combustion (CLC) process has been one of the most pursued research areas of the present decade due to its ability to reduce carbon foot print during utilization of coal to generate energy. Based on a 2D computational fluid dynamics model, the present work provides a computational approach to study the effect of operating pressure--a key parameter in designing of CLC reactors, on optimum operating conditions. The effects of operating pressure have been examined in terms of reactors temperature, percentage of fuel conversion and purity of carbon dioxide in fuel reactor exhaust. The simulated results show qualitative agreement with the trends obtained by other investigators during experimental studies.展开更多
The electrochemical conversion of CO2 into value-added chemicals and fuels has attracted wide-spread concern since it realizes the recycling of greenhouse gases. Production of new materials lies at the very core of th...The electrochemical conversion of CO2 into value-added chemicals and fuels has attracted wide-spread concern since it realizes the recycling of greenhouse gases. Production of new materials lies at the very core of this technology as it enables the improvement of developmental efficiency and selectivity by chemical optimization of morphology and electronic structure. Transition metal-based catalysts are particularly appealing as their d bands have valence electrons which are close to the Fermi level and hence overcome the intrinsic activation barriers and reaction kinetics. The study of Mo, Fe, Co, and Ni-based materials in particular is a very recent research subject that offers various possibilities in electrochemical CO2 reduction applications. Herein, we summarize the recent re-search progress of Mo, Fe, Co, and Ni-based catalysts and their catalytic behavior in electrochemical CO〈sub〉2 reduction. We particularly focus on the relationship between structures and properties, with examples of the key features accounting for the high efficiency and selectivity of the CO2 reduction process. The most significant experimental and theoretical improvements are highlighted. Finally, we concisely discuss the scientific challenges and opportunities for transition metal-based catalysts.展开更多
Density functional theory calculations were carried out to investigate the influence of doping transition metal(TM) ions into the ceria surface on the activation of surface lattice oxygen atoms. For this purpose, the ...Density functional theory calculations were carried out to investigate the influence of doping transition metal(TM) ions into the ceria surface on the activation of surface lattice oxygen atoms. For this purpose, the structure and stability of the most stable(111) surface termination of CeO2 modified by TM ions was determined. Except for Zr and Pt dopants that preserve octahedral oxygen coordination, the TM dopants prefer a square-planar coordination when substituting the surface Ce ions. The surface construction from octahedral to square-planar is facile for all TM dopants, except for Pt(1.14 e V) and Zr(square-planar coordination unstable). Typically, the ionic radius of tetravalent TM cations is much smaller than that of Ce4+, resulting a significant tensile-strained lattice and explaining the lowered oxygen vacancy formation energy. Except for Zr, the square-planar structure is the preferred one when one oxygen vacancy is created. Thermodynamic analysis shows that TM-doped CeO2 surfaces contain oxygen defects under typical conditions of environmental catalysis. A case of practical importance is the facile lattice oxygen activation in Zr-doped CeO2(111), which benefits CO oxidation. The findings emphasize the origin of lattice oxygen activation and the preferred location of TM dopants in TM-ceria solid solution catalysts.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
Many researchers have studied the ocean carbon cycle model trying to regulate the level of CO2 in atmosphere from viewpoint of quantification. Unlike other researches, this paper analyzes the conversion process of car...Many researchers have studied the ocean carbon cycle model trying to regulate the level of CO2 in atmosphere from viewpoint of quantification. Unlike other researches, this paper analyzes the conversion process of carbon element in the ocean from the qualitative viewpoint. There are many complex roles in the ocean carbon cycle, and it is hard to represent the case that an entity plays different role in different environment. An ontology technology Hozo role theory developed by Osaka University Mizoguchi Laboratory is proposed as a solution. The basic concepts and representation mode of Hozo role theory is introduced. The conversion process of ocean carbon cycle is abstracted and an ontology model using Hozo role theory is proposed. Instead of comprehensive common ontology construction method, we propose our own ontology development steps. Then an ontology about ocean carbon cycle is built in order to describe and share the basic knowledge of ocean carbon cycle. A knowledge base of material circulation is proposed based on the ontology. Its construction framework is described and some knowledge base query examples are also illustrated. Conclusions show that the role theory can effectively solve the problem of multirole description in ocean carbon cycle, and knowledge reasoning based on ontology is also effective.展开更多
The use of CO2-free energy sources for running SOEC (solid-oxide electrolysis cell) technologies has a great potential to reduce the carbon dioxide emissions compared to fossil fuel based technologies for hydrogen p...The use of CO2-free energy sources for running SOEC (solid-oxide electrolysis cell) technologies has a great potential to reduce the carbon dioxide emissions compared to fossil fuel based technologies for hydrogen production. The operation of the electrolysis cell at higher temperature offers the benefit of increasing the efficiency of the process. The range of the operating temperature of the SOEC is typically between 800 ~C and 1,000 ~C. Main sources of degradation that affect the SOEC stack lifetime is related to the high operating temperature. To increase the electrolyser durability, one possible solution is to decrease the operating temperature down to 650 ~C, which represents the typical operating range of the ITSE (intermediate temperature steam electrolysis). This paper is related to the work of the JU-FCH project ADEL, which investigates different carbon-free energy sources with respect to potential coupling schemes to ITSE. A predominant focus of the analysis is put on solar concentrating energy systems (solar tower) and nuclear energy as energy sources to provide the required electricity and heat for the ITSE. This study will present an overview of the main considerations, the boundary conditions and the results concerning the development of coupling schemes of the energy conversion technologies to the electrolyser.展开更多
Photothermal conversion for water vapor gen- eration is a novel strategy and an efficient way to utilize solar energy, which has great potential for water purification and desalination. In this review, the development...Photothermal conversion for water vapor gen- eration is a novel strategy and an efficient way to utilize solar energy, which has great potential for water purification and desalination. In this review, the development of photothermal conversion and the classification of absorbers for solar vapor generation systems are presented, especially in recent devel- opment of carbon nanocomposites (carbon nanotubes and graphene) as solar vapor generation devices. Combined with recent progresses and achievements in this field, we discuss the challenges and opportunities for photothermal conversion based on carbon nanocomposites as well as their promising applications.展开更多
The catalytic effect of electrode materials is one of the most crucial factors for achieving efficient electrochemical energy conversion and storage.Carbon-based metal composites were widely synthesized and employed a...The catalytic effect of electrode materials is one of the most crucial factors for achieving efficient electrochemical energy conversion and storage.Carbon-based metal composites were widely synthesized and employed as electrode materials because of their inherited outstanding properties.Usually,electrode materials can provide a higher capacity than the anticipated values,even beyond the theoretical limit.The origin of the extra capacity has not yet been explained accurately,and its formation mechanism is still ambiguous.Herein,we first summarized the current research progress and drawbacks in energy storage devices(ESDs),and elaborated the role of catalytic effect in enhancing the performance of ESDs as follows:promoting the evolution of the solid electrolyte interphase(SEI),accelerating the reversible conversion of discharge/charge products,and improving the conversion speed of the intermediate and the utilization rate of the active materials,thereby avoiding the shuttling effect.Additionally,a particular focus was placed on the interaction between the catalytic effect and energy storage performance in order to highlight the efficacy and role of the catalytic effect.We hope that this review could provide innovative ideas for designing the electrode materials with an efficient catalytic effect for ESDs to promote the development of this research field.展开更多
文摘Definition of coefficient of carbon transfer in European Standard (EN 10052) is presented as: "Mass of carbon transferred from carburizing medium into the steel, per unit surface area per second for a unit difference between the carbon potential, and actual surface carbon content". In this paper, a model is presented of carbon transfer from endothermic atmospheres to carbon steel. The carbon transfer coefficient values were determined experimentally by the foil technique and on specimens, taking into account the following parameters: chemical composition of atmospheres, carbon potential, temperature and time of the carburizing process. Some examples of the variation of the carbon transfer coefficient for two steps of the carburizing process, including soaking before quenching, are given, based on results obtained. The effect of carbon transfer coefficient on carbon content at the steel surface is given.
基金Under the auspices of International Key Project of Technological Cooperation (No. 2001DFDF0004)
文摘Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O7-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.51g/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.
文摘Techno-economic development of chemical looping combustion (CLC) process has been one of the most pursued research areas of the present decade due to its ability to reduce carbon foot print during utilization of coal to generate energy. Based on a 2D computational fluid dynamics model, the present work provides a computational approach to study the effect of operating pressure--a key parameter in designing of CLC reactors, on optimum operating conditions. The effects of operating pressure have been examined in terms of reactors temperature, percentage of fuel conversion and purity of carbon dioxide in fuel reactor exhaust. The simulated results show qualitative agreement with the trends obtained by other investigators during experimental studies.
基金supported by the National Natural Science Foundation of China (21477050, 21522603, 21706101)the Henry Fok Education Foundation (141068)+2 种基金Six Talents Peak Project in Jiangsu Province (XCL-025)the Chinese-German Cooperation Research Project (GZ1091)the China Postdoctoral Foundation (2017M611731)~~
文摘The electrochemical conversion of CO2 into value-added chemicals and fuels has attracted wide-spread concern since it realizes the recycling of greenhouse gases. Production of new materials lies at the very core of this technology as it enables the improvement of developmental efficiency and selectivity by chemical optimization of morphology and electronic structure. Transition metal-based catalysts are particularly appealing as their d bands have valence electrons which are close to the Fermi level and hence overcome the intrinsic activation barriers and reaction kinetics. The study of Mo, Fe, Co, and Ni-based materials in particular is a very recent research subject that offers various possibilities in electrochemical CO2 reduction applications. Herein, we summarize the recent re-search progress of Mo, Fe, Co, and Ni-based catalysts and their catalytic behavior in electrochemical CO〈sub〉2 reduction. We particularly focus on the relationship between structures and properties, with examples of the key features accounting for the high efficiency and selectivity of the CO2 reduction process. The most significant experimental and theoretical improvements are highlighted. Finally, we concisely discuss the scientific challenges and opportunities for transition metal-based catalysts.
基金supported by The Netherlands Organization for Scientific Research(NWO)through a Vici grant and Nuffic fundingfunding from the European Union’s Horizon 2020 research and innovation programme under grant No.686086(Partial-PGMs)。
文摘Density functional theory calculations were carried out to investigate the influence of doping transition metal(TM) ions into the ceria surface on the activation of surface lattice oxygen atoms. For this purpose, the structure and stability of the most stable(111) surface termination of CeO2 modified by TM ions was determined. Except for Zr and Pt dopants that preserve octahedral oxygen coordination, the TM dopants prefer a square-planar coordination when substituting the surface Ce ions. The surface construction from octahedral to square-planar is facile for all TM dopants, except for Pt(1.14 e V) and Zr(square-planar coordination unstable). Typically, the ionic radius of tetravalent TM cations is much smaller than that of Ce4+, resulting a significant tensile-strained lattice and explaining the lowered oxygen vacancy formation energy. Except for Zr, the square-planar structure is the preferred one when one oxygen vacancy is created. Thermodynamic analysis shows that TM-doped CeO2 surfaces contain oxygen defects under typical conditions of environmental catalysis. A case of practical importance is the facile lattice oxygen activation in Zr-doped CeO2(111), which benefits CO oxidation. The findings emphasize the origin of lattice oxygen activation and the preferred location of TM dopants in TM-ceria solid solution catalysts.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
基金supported by the New Century Excellent Talents in University (NCET-07-0784)the Foundation of Henan Educational Committee (12A520003)
文摘Many researchers have studied the ocean carbon cycle model trying to regulate the level of CO2 in atmosphere from viewpoint of quantification. Unlike other researches, this paper analyzes the conversion process of carbon element in the ocean from the qualitative viewpoint. There are many complex roles in the ocean carbon cycle, and it is hard to represent the case that an entity plays different role in different environment. An ontology technology Hozo role theory developed by Osaka University Mizoguchi Laboratory is proposed as a solution. The basic concepts and representation mode of Hozo role theory is introduced. The conversion process of ocean carbon cycle is abstracted and an ontology model using Hozo role theory is proposed. Instead of comprehensive common ontology construction method, we propose our own ontology development steps. Then an ontology about ocean carbon cycle is built in order to describe and share the basic knowledge of ocean carbon cycle. A knowledge base of material circulation is proposed based on the ontology. Its construction framework is described and some knowledge base query examples are also illustrated. Conclusions show that the role theory can effectively solve the problem of multirole description in ocean carbon cycle, and knowledge reasoning based on ontology is also effective.
文摘The use of CO2-free energy sources for running SOEC (solid-oxide electrolysis cell) technologies has a great potential to reduce the carbon dioxide emissions compared to fossil fuel based technologies for hydrogen production. The operation of the electrolysis cell at higher temperature offers the benefit of increasing the efficiency of the process. The range of the operating temperature of the SOEC is typically between 800 ~C and 1,000 ~C. Main sources of degradation that affect the SOEC stack lifetime is related to the high operating temperature. To increase the electrolyser durability, one possible solution is to decrease the operating temperature down to 650 ~C, which represents the typical operating range of the ITSE (intermediate temperature steam electrolysis). This paper is related to the work of the JU-FCH project ADEL, which investigates different carbon-free energy sources with respect to potential coupling schemes to ITSE. A predominant focus of the analysis is put on solar concentrating energy systems (solar tower) and nuclear energy as energy sources to provide the required electricity and heat for the ITSE. This study will present an overview of the main considerations, the boundary conditions and the results concerning the development of coupling schemes of the energy conversion technologies to the electrolyser.
基金supported by the National Key R&D Program of China (2016YFA0200200)the Key Laboratory of Textile Fiber & Product (Wuhan Textile University)Ministry of Education (FZXW006)
文摘Photothermal conversion for water vapor gen- eration is a novel strategy and an efficient way to utilize solar energy, which has great potential for water purification and desalination. In this review, the development of photothermal conversion and the classification of absorbers for solar vapor generation systems are presented, especially in recent devel- opment of carbon nanocomposites (carbon nanotubes and graphene) as solar vapor generation devices. Combined with recent progresses and achievements in this field, we discuss the challenges and opportunities for photothermal conversion based on carbon nanocomposites as well as their promising applications.
基金the National Natural Science Foundation of China(21875221,21890753,22162026,22225204,and U1967215)the National Key Research and Development Program of China(2016YFB0101202)+2 种基金the Youth Talent Support Program of High-Level Talents Special Support Plan in Henan Province(ZYQR201810148)Qiushi Scientific Research Initiation Plan of Zhengzhou University(32213243)the Distinguished Young Scholars Innovation Team of Zhengzhou University(32320275).
文摘The catalytic effect of electrode materials is one of the most crucial factors for achieving efficient electrochemical energy conversion and storage.Carbon-based metal composites were widely synthesized and employed as electrode materials because of their inherited outstanding properties.Usually,electrode materials can provide a higher capacity than the anticipated values,even beyond the theoretical limit.The origin of the extra capacity has not yet been explained accurately,and its formation mechanism is still ambiguous.Herein,we first summarized the current research progress and drawbacks in energy storage devices(ESDs),and elaborated the role of catalytic effect in enhancing the performance of ESDs as follows:promoting the evolution of the solid electrolyte interphase(SEI),accelerating the reversible conversion of discharge/charge products,and improving the conversion speed of the intermediate and the utilization rate of the active materials,thereby avoiding the shuttling effect.Additionally,a particular focus was placed on the interaction between the catalytic effect and energy storage performance in order to highlight the efficacy and role of the catalytic effect.We hope that this review could provide innovative ideas for designing the electrode materials with an efficient catalytic effect for ESDs to promote the development of this research field.