To improve the oral absorption of poorly water-soluble drugs by overcoming the intestinal epithelium barrier, calcium carbonate nanoparticles targeting to intestine peptide transporter 1(Pep T1) were fabricated by m...To improve the oral absorption of poorly water-soluble drugs by overcoming the intestinal epithelium barrier, calcium carbonate nanoparticles targeting to intestine peptide transporter 1(Pep T1) were fabricated by modification of the surface of calcium carbonate nanoparticles with Gly-Sar. Gly-Sar-conjugated TPGS was successfully synthesized and characterized, and coumarin 6-loaded Gly-Sar modified calcium carbonate nanoparticles were then prepared and characterized to have a nano-scaled size of about 193 nm in diameter, cracked surface morphology under a scanning electron microscope, and high drug loading efficiency(60.5±5.9)%. Moreover, the Gly-Sar-modified calcium carbonate nanoparticles exhibited better drug loading stability during the process of their transcellular transport, and evidently enhanced intestinal absorption of poorly water-soluble agents. Therefore, the designed intestine Pep T1-targeted calcium carbonate nanoparticles might have a promising potential for oral delivery of poorly water-soluble drugs.展开更多
基金The National Natural Science Foundation of China(Grant No.81673366)the National Key Science Research Program of China(973 Program,Grant No.2015CB932100)
文摘To improve the oral absorption of poorly water-soluble drugs by overcoming the intestinal epithelium barrier, calcium carbonate nanoparticles targeting to intestine peptide transporter 1(Pep T1) were fabricated by modification of the surface of calcium carbonate nanoparticles with Gly-Sar. Gly-Sar-conjugated TPGS was successfully synthesized and characterized, and coumarin 6-loaded Gly-Sar modified calcium carbonate nanoparticles were then prepared and characterized to have a nano-scaled size of about 193 nm in diameter, cracked surface morphology under a scanning electron microscope, and high drug loading efficiency(60.5±5.9)%. Moreover, the Gly-Sar-modified calcium carbonate nanoparticles exhibited better drug loading stability during the process of their transcellular transport, and evidently enhanced intestinal absorption of poorly water-soluble agents. Therefore, the designed intestine Pep T1-targeted calcium carbonate nanoparticles might have a promising potential for oral delivery of poorly water-soluble drugs.