Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters wi...Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.展开更多
The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alt...The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alternative approach for theoretically dealing with chemical dissolution front (CDF) propagation in fluid-saturated carbonate rocks. Note that the CDF is represented by the porosity front in this study. In this new approach, the porosity, pore-fluid velocity and acid concentration are directly used as independent variables. To illustrate how to use the present new approach, an aeidization dissolution system (ADS) consisting of carbonate rocks, which belongs to one of the many general chemical dissolution systems (CDSs), is taken as an application example. When the acid dissolution capacity (ADC) number (that is defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid) approaches zero, the present new approach can be used to obtain analytical solutions for the stable ADS. However, if the ADC number is a nonzero finite number, then numerical solutions can be only obtained for the ADS, especially when the ADS is in an unstable state. The related theoretical results have demonstrated that: (1) When the ADS is in a stable state and in the case of the ADC number approaching zero, the present new approach is mathematically equivalent to the previous approach, in which the porosity, pore-fluid pressure and acid concentration are used as independent variables. However, when the ADS is in an unstable state, the use of the present new approach leads to a free parameter that needs to be determined by some other ways. (2) The existence of a non-step-type dissolution front within a transient region should at least satisfy that none of the ADC number, injected acid velocity and reciprocal of the dissolution reaction rate is equal to zero in the stable ADS.展开更多
基金sponsored jointly by the National Natural Science Foundation of China(No.41074098)the Key State Science and Technology Project(2011ZX05023-005-005)China University of Petroleum(Beijing) Fund(KYJJ2012-05-08)
文摘Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.
基金supported by the National Natural Science Foundation of China(Grant No.11272359)
文摘The natural phenomenon associated with the chemical dissolution of dissolvable minerals of rocks can be employed to develop innovative technology in mining and oil extracting engineering. This paper presents a new alternative approach for theoretically dealing with chemical dissolution front (CDF) propagation in fluid-saturated carbonate rocks. Note that the CDF is represented by the porosity front in this study. In this new approach, the porosity, pore-fluid velocity and acid concentration are directly used as independent variables. To illustrate how to use the present new approach, an aeidization dissolution system (ADS) consisting of carbonate rocks, which belongs to one of the many general chemical dissolution systems (CDSs), is taken as an application example. When the acid dissolution capacity (ADC) number (that is defined as the ratio of the volume of the carbonate rock dissolved by an acid to that of the acid) approaches zero, the present new approach can be used to obtain analytical solutions for the stable ADS. However, if the ADC number is a nonzero finite number, then numerical solutions can be only obtained for the ADS, especially when the ADS is in an unstable state. The related theoretical results have demonstrated that: (1) When the ADS is in a stable state and in the case of the ADC number approaching zero, the present new approach is mathematically equivalent to the previous approach, in which the porosity, pore-fluid pressure and acid concentration are used as independent variables. However, when the ADS is in an unstable state, the use of the present new approach leads to a free parameter that needs to be determined by some other ways. (2) The existence of a non-step-type dissolution front within a transient region should at least satisfy that none of the ADC number, injected acid velocity and reciprocal of the dissolution reaction rate is equal to zero in the stable ADS.