Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two em...Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.展开更多
Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike ...Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity.展开更多
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was...Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.展开更多
The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and ...The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.展开更多
A series of N‐CQDs/Ag2CO3composite crystals(where N‐CQDs=Nitrogen doped carbon quantumdots)were prepared by adding different volumes of a solution of N‐CQDs during Ag2CO3crystalgrowth.Under irradiation from a350‐W...A series of N‐CQDs/Ag2CO3composite crystals(where N‐CQDs=Nitrogen doped carbon quantumdots)were prepared by adding different volumes of a solution of N‐CQDs during Ag2CO3crystalgrowth.Under irradiation from a350‐W Xe lamp light(with optical filter,λ≥420nm),the performanceof N‐CQDs/Ag2CO3in photocatalytic degradation of phenol was evaluated.The as‐preparedsamples were analyzed by XRD,SEM,TEM,BET,element mapping,UV‐vis DRS,FT‐IR,XPS,transientphotocurrent response and EIS testing.The results showed that after coupling with trace amountsof N‐CQDs,both the photocatalytic activity and stability of Ag2CO3were greatly boosted.The additionof N‐CQDs solution influenced the crystallization of Ag2CO3,resulting in a distinct decrease inAg2CO3crystal size and an obvious increase in surface area.Moreover,the charge transfer resistancewas greatly reduced,and the separation efficiency of photogenerated electrons and holes wasstrongly promoted.The presence of NCQDs on the surface of the catalysts facilitates the transfer ofphotogenerated electrons,slowing the photocorrosion rate of Ag2CO3,and then resulting in higherstability than bare Ag2CO3in degradation.The synergistic effect of the improvement of morphologyand charge transfer rate thus accounted for the superior photocatalytic performance ofN‐CQDs/Ag2CO3.展开更多
Carbon quantum dots(CQDs)are fluorescent carbon nanomaterials that have been applied to biology,medicine,and optoelectronics,owing to their significant advantages such as simple synthesis methods,low cost,and widely a...Carbon quantum dots(CQDs)are fluorescent carbon nanomaterials that have been applied to biology,medicine,and optoelectronics,owing to their significant advantages such as simple synthesis methods,low cost,and widely available sources of raw synthesis materials.This review summarizes CQD preparation methods,which include hydrothermal and microwave-assisted synthesis methods,as well as separation methods such as centrifugation,dialysis,and filtration.Additionally,we review the application of CQDs in the detection of active ingredients,primarily phenolic compounds,in traditional Chinese medicine.We also discuss the quenching mechanism of CQD fluorescence using the active ingredients of traditional Chinese medicine.Limitations such as insufficient test selectivity,weak fluorescence intensity,and an unclear quantitative relationship between preparation methods and properties should be resolved for the efficient use of CQDs to detect active ingredients in Chinese medicine.展开更多
The unique properties of carbon quantum dots (CQDs) make them promising materials in many ?elds. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor...The unique properties of carbon quantum dots (CQDs) make them promising materials in many ?elds. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor for the purpose of providing a high value-added solution for this “biomass conversion process waste”. The structure of the CQDs was analyzed, and the effects of reaction temperature and time on the CQDs’ ?uorescence were investigated. The results showed that humins were effectively carbonized during the reaction. The ?uorescence intensity of humin-based CQDs initially increased with reaction temperature and time, and subsequently decreased beyond 200℃ and 4 h. Polyaromatic structures and hydrophilic groups such as O-H, C-O, -COOH and C==O groups exist in the CQDs. The humin-based CQDs have the dimension of 3~7 nm with an average size of about 5.5 nm. The highest emission intensity of blue/cyan ?uorescence light at 440 nm is achieved on the excitation with UV light at the wavelength of 330 nm.展开更多
The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting a...The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.展开更多
Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consist...Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C‐dots(C‐dots/CdS NWs)were synthesized using chemical deposition methods.The mass fraction of C‐dots to CdS NWs in these photocatalysts was varied.The photocatalysts were characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,and ultraviolet‐visible spectroscopy.Their photocatalytic performance for the spitting of water and the degradation of rhodamine B(RhB)under visible light irradiation were investigated.The photocatalytic performance of the C‐dots/CdS NWs was enhanced when compared with that of the pure CdS NWs,with the 0.4%C‐dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB.The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C‐dots and CdS NWs.This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.展开更多
In this work, we investigated the energy transfer (EnT) and electron transfer (ET) processes as well as their relationship in the carbon quantum dots/rhodamine B (CQDs/RhB) including o-CQDs/Rh B and m-CQDs/RhB systems...In this work, we investigated the energy transfer (EnT) and electron transfer (ET) processes as well as their relationship in the carbon quantum dots/rhodamine B (CQDs/RhB) including o-CQDs/Rh B and m-CQDs/RhB systems by using photoluminescence spectroscopy in combination with steady-state and transient absorption spectroscopy. We found that the ET process is negligible in the o-CQDs/RhB system with an EnT efficiency as high as 73.2%,while it becomes pronounced in the m-CQDs/RhB system whose EnT efficiency is lower than 33.5%. Such an interplay of En T and ET processes revealed in the prototypical composite system consisting of carbon quantum dots and dye molecules would provide helpful insights for applications of relevance to exciton quenching.展开更多
This paper revisits the Coca-Cola/Huiyuan case, using quantitative methods. We first estimate the demand system of carbonated soft drinks and juices, using the data of the 4-digit code Chinese soft drink industry. We ...This paper revisits the Coca-Cola/Huiyuan case, using quantitative methods. We first estimate the demand system of carbonated soft drinks and juices, using the data of the 4-digit code Chinese soft drink industry. We then define the relevant market by implementing the SSNIP test (a.k.a. the hypothetical monopolist test). Finally, we evaluate the unilateral effect on the juices market with merger simulation. Our results show that carbonated soft drinks and juicess are in two separate relevant markets. More importantly, there may, be a significant unilateral effect on the juices market based on scenario analysis. 7his result confirms the MOFCOM decision itself, but highlights that competition damage comes more from unilateral efect than from the dubious portfolio effect.展开更多
Photocatalytic pollutant removal provides a competitive manner for wastewater purification.The exploration of efficient and durable photocatalysts is significant for this technique.Integrating carbon quantum dots and ...Photocatalytic pollutant removal provides a competitive manner for wastewater purification.The exploration of efficient and durable photocatalysts is significant for this technique.Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy.In comparison to S-scheme junction,photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both,thus holding greater potential.Herein,a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta_(3)N_(5)that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic.The as-prepared carbon quantum dots/CdS/Ta_(3)N_(5)heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity,with the rate constant(0.0404 min^(−1))exceeding Ta_(3)N_(5),CdS/Ta_(3)N_(5),and CdS by 39.4,2.1,and 7.2 folds.Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface,which favors the synergistic effect between carbon quantum dots modification and S-scheme junction.This work offers a new way for developing new Ta_(3)N_(5)-based heterojunctions for environmental remediation.展开更多
At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL ...At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated 7x-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink- enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.展开更多
Herein,a unique nanohybrid foam was fabricated with titanium dioxide(TiO2)-carbon quantum dots(CQDs)nanoparticles intercalated between graphene oxide(GO)layers via a facile and low-cost solvothermal method.Compared wi...Herein,a unique nanohybrid foam was fabricated with titanium dioxide(TiO2)-carbon quantum dots(CQDs)nanoparticles intercalated between graphene oxide(GO)layers via a facile and low-cost solvothermal method.Compared with pure GO foam,the fabricated GO-TiO2-CQDs foam displayed high degradation rate towards methyl orange(MO),methylene blue(MB),and rhodamine B(Rh B),respectively,under the Xenon lamp irradiation.The composite foam can be used for several times and remain a high degradation rate without structural damage.The photochemical property was attributed to the 3D porous structure of GOTiO2-CQDs foam,in which ultrafine hydrogenated TiO2-CQDs nanoparticles were densely anchored on the GO sheets.This paper provides an efficient strategy to tune the charge transport and thus enhance the photocatalytic performance by combining the semi-conductive GO and quantum dots.展开更多
An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly fl-om the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were...An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly fl-om the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were adjusted to control the particle sizes and the quantum yields of the obtained CQDs. The as-prepared carbon quantum dots showed narrow particle size distribution, good water solubility, and acceptable fluorescence lifetimes. Due to their high stability, these obtained carbon quantum dots have great application potential in nano-biotechnology. Furthermore, carbon spheres with uniform morphology and size can be easily obtained as the reaction byproducts of this green synthesis process.展开更多
文摘Using simple and eco-friendly ethanol solvothermal treatment,dual-emission biomass carbon quantum dots(D-BCQDs)were synthesized from biomass viburnum awabuki leaves.Under excitation with 413 nm wavelength light two emission peaks appeared at 490 and 675 nm and the dots could be tuned to emit crimson,red,purplish red,purple and blue-gray fluorescence by changing the solvothermal temperature from 140℃ to 160,180,200 and 240℃,respectively.XPS and FTIR characterization in-dicated that the fluorescence color was mainly determined by surface oxidation defects,elemental nitrogen and sp^(2)-C/sp^(3)-C hybrid-ized structural domains.The D-BCQDs could not only detect Fe^(3+)or Cu^(2+),but also quantify the concentration ratio of Fe^(3+)to Cu^(2+)in a solution containing both,demonstrating their potential applications in the simultaneous detection of Fe^(3+)and Cu^(2+)ions.
文摘Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity.
基金Project(52064032)supported by the National Natural Science Foundation of ChinaProjects(2019ZE001,202002AB080001)supported by the Yunnan Science and Technology Projects,ChinaProject(YNWR-QNBJ-2018-005)supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents,China。
文摘Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.
基金supported by the National Key Basic Research Program of China(973 Program,2014CB239303)the National Natural Science Foundation of China(21872031,U1705251)the Award Program for Minjiang Scholar Professorship~~
文摘The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.
基金supported by the National Natural Science Foundation of China(21567008,21607064,21707055)Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology+2 种基金Program of 5511 Talents in Scientific and Technological Innovation of Jiangxi Province(20165BCB18014)Academic and Technical Leaders of the Main Disciplines in Jiangxi Province(20172BCB22018)Jiangxi Province Natural Science Foundation(20161BAB203090)~~
文摘A series of N‐CQDs/Ag2CO3composite crystals(where N‐CQDs=Nitrogen doped carbon quantumdots)were prepared by adding different volumes of a solution of N‐CQDs during Ag2CO3crystalgrowth.Under irradiation from a350‐W Xe lamp light(with optical filter,λ≥420nm),the performanceof N‐CQDs/Ag2CO3in photocatalytic degradation of phenol was evaluated.The as‐preparedsamples were analyzed by XRD,SEM,TEM,BET,element mapping,UV‐vis DRS,FT‐IR,XPS,transientphotocurrent response and EIS testing.The results showed that after coupling with trace amountsof N‐CQDs,both the photocatalytic activity and stability of Ag2CO3were greatly boosted.The additionof N‐CQDs solution influenced the crystallization of Ag2CO3,resulting in a distinct decrease inAg2CO3crystal size and an obvious increase in surface area.Moreover,the charge transfer resistancewas greatly reduced,and the separation efficiency of photogenerated electrons and holes wasstrongly promoted.The presence of NCQDs on the surface of the catalysts facilitates the transfer ofphotogenerated electrons,slowing the photocorrosion rate of Ag2CO3,and then resulting in higherstability than bare Ag2CO3in degradation.The synergistic effect of the improvement of morphologyand charge transfer rate thus accounted for the superior photocatalytic performance ofN‐CQDs/Ag2CO3.
基金supported by the National S&T Major Project of China(2018ZX09201011-003)the National Project for Standardization of Chinese Materia Medica(ZYBZH-C-GD-04).
文摘Carbon quantum dots(CQDs)are fluorescent carbon nanomaterials that have been applied to biology,medicine,and optoelectronics,owing to their significant advantages such as simple synthesis methods,low cost,and widely available sources of raw synthesis materials.This review summarizes CQD preparation methods,which include hydrothermal and microwave-assisted synthesis methods,as well as separation methods such as centrifugation,dialysis,and filtration.Additionally,we review the application of CQDs in the detection of active ingredients,primarily phenolic compounds,in traditional Chinese medicine.We also discuss the quenching mechanism of CQD fluorescence using the active ingredients of traditional Chinese medicine.Limitations such as insufficient test selectivity,weak fluorescence intensity,and an unclear quantitative relationship between preparation methods and properties should be resolved for the efficient use of CQDs to detect active ingredients in Chinese medicine.
基金supported by the Research Project for Hot Tracking Items of Beijing Forestry University(2017BLRD03)the National Natural Science Foundation of China(51603012)Beijing Municipal Natural Science Foundation(6182031)
文摘The unique properties of carbon quantum dots (CQDs) make them promising materials in many ?elds. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor for the purpose of providing a high value-added solution for this “biomass conversion process waste”. The structure of the CQDs was analyzed, and the effects of reaction temperature and time on the CQDs’ ?uorescence were investigated. The results showed that humins were effectively carbonized during the reaction. The ?uorescence intensity of humin-based CQDs initially increased with reaction temperature and time, and subsequently decreased beyond 200℃ and 4 h. Polyaromatic structures and hydrophilic groups such as O-H, C-O, -COOH and C==O groups exist in the CQDs. The humin-based CQDs have the dimension of 3~7 nm with an average size of about 5.5 nm. The highest emission intensity of blue/cyan ?uorescence light at 440 nm is achieved on the excitation with UV light at the wavelength of 330 nm.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060200)National Key Technology Research and Development Program of China(No.2012BAD22B04)Visiting Professorship for Senior International Scientists of Chinese Academy of Sciences(No.2012T1Z0006)
文摘The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.
基金financially supported by the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(LSMRI)(KF160413)the National Natural Science Foundation of China(21301161,41376126)~~
文摘Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C‐dots(C‐dots/CdS NWs)were synthesized using chemical deposition methods.The mass fraction of C‐dots to CdS NWs in these photocatalysts was varied.The photocatalysts were characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,and ultraviolet‐visible spectroscopy.Their photocatalytic performance for the spitting of water and the degradation of rhodamine B(RhB)under visible light irradiation were investigated.The photocatalytic performance of the C‐dots/CdS NWs was enhanced when compared with that of the pure CdS NWs,with the 0.4%C‐dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB.The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C‐dots and CdS NWs.This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.
基金supported by the National Key Research and Development Program on Nano Science and Technology of MOST(No.2016YFA0200602 and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211 and No.21633007)the Anhui Initiative in Quantum Information Technologies(AHY090200)
文摘In this work, we investigated the energy transfer (EnT) and electron transfer (ET) processes as well as their relationship in the carbon quantum dots/rhodamine B (CQDs/RhB) including o-CQDs/Rh B and m-CQDs/RhB systems by using photoluminescence spectroscopy in combination with steady-state and transient absorption spectroscopy. We found that the ET process is negligible in the o-CQDs/RhB system with an EnT efficiency as high as 73.2%,while it becomes pronounced in the m-CQDs/RhB system whose EnT efficiency is lower than 33.5%. Such an interplay of En T and ET processes revealed in the prototypical composite system consisting of carbon quantum dots and dye molecules would provide helpful insights for applications of relevance to exciton quenching.
文摘This paper revisits the Coca-Cola/Huiyuan case, using quantitative methods. We first estimate the demand system of carbonated soft drinks and juices, using the data of the 4-digit code Chinese soft drink industry. We then define the relevant market by implementing the SSNIP test (a.k.a. the hypothetical monopolist test). Finally, we evaluate the unilateral effect on the juices market with merger simulation. Our results show that carbonated soft drinks and juicess are in two separate relevant markets. More importantly, there may, be a significant unilateral effect on the juices market based on scenario analysis. 7his result confirms the MOFCOM decision itself, but highlights that competition damage comes more from unilateral efect than from the dubious portfolio effect.
文摘Photocatalytic pollutant removal provides a competitive manner for wastewater purification.The exploration of efficient and durable photocatalysts is significant for this technique.Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy.In comparison to S-scheme junction,photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both,thus holding greater potential.Herein,a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta_(3)N_(5)that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic.The as-prepared carbon quantum dots/CdS/Ta_(3)N_(5)heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity,with the rate constant(0.0404 min^(−1))exceeding Ta_(3)N_(5),CdS/Ta_(3)N_(5),and CdS by 39.4,2.1,and 7.2 folds.Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface,which favors the synergistic effect between carbon quantum dots modification and S-scheme junction.This work offers a new way for developing new Ta_(3)N_(5)-based heterojunctions for environmental remediation.
文摘At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated 7x-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink- enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.
基金supported by the National Natural Science Foundation of China (NSFC, 51573013 and 51873016)the Open Project Program of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (QETHSP2019006)
文摘Herein,a unique nanohybrid foam was fabricated with titanium dioxide(TiO2)-carbon quantum dots(CQDs)nanoparticles intercalated between graphene oxide(GO)layers via a facile and low-cost solvothermal method.Compared with pure GO foam,the fabricated GO-TiO2-CQDs foam displayed high degradation rate towards methyl orange(MO),methylene blue(MB),and rhodamine B(Rh B),respectively,under the Xenon lamp irradiation.The composite foam can be used for several times and remain a high degradation rate without structural damage.The photochemical property was attributed to the 3D porous structure of GOTiO2-CQDs foam,in which ultrafine hydrogenated TiO2-CQDs nanoparticles were densely anchored on the GO sheets.This paper provides an efficient strategy to tune the charge transport and thus enhance the photocatalytic performance by combining the semi-conductive GO and quantum dots.
基金supported by the National Basic Research Program of China(2013CB922102,2011CB935800)the National Natural Science Foundation of China(21071076,51172106,21021062)
文摘An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly fl-om the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were adjusted to control the particle sizes and the quantum yields of the obtained CQDs. The as-prepared carbon quantum dots showed narrow particle size distribution, good water solubility, and acceptable fluorescence lifetimes. Due to their high stability, these obtained carbon quantum dots have great application potential in nano-biotechnology. Furthermore, carbon spheres with uniform morphology and size can be easily obtained as the reaction byproducts of this green synthesis process.