10 mm NM450D低合金耐磨钢板(/%:0.22C,0.70Cr,1.50Mn,0.30Si,0.012Ti,0.030Nb)和10 mm Q235B碳钢板(/%:0.19C,0.25Mn,0.04Si)经表面处理和四角焊接成20 mm复合板,在180 mm二辊实验轧机上经1 150℃,60%压下率和930℃,30%压下率两次轧制...10 mm NM450D低合金耐磨钢板(/%:0.22C,0.70Cr,1.50Mn,0.30Si,0.012Ti,0.030Nb)和10 mm Q235B碳钢板(/%:0.19C,0.25Mn,0.04Si)经表面处理和四角焊接成20 mm复合板,在180 mm二辊实验轧机上经1 150℃,60%压下率和930℃,30%压下率两次轧制成5.6 mm复合板,再经800~1 000℃淬火,250℃回火处理。结果表明,经900℃淬火+250℃回火的低合金耐磨钢-碳钢复合板的5.6 mm复合界面接触良好,Q235B钢组织为板条马氏体+铁素体和少部贝氏体和珠光体,NM450D钢组织为回火马氏体,其HV值为500,复合钢板抗剪强度为367 MPa,均达到标准要求。展开更多
基于弹塑性热力耦合有限元法研究了72 mm Q235钢基板和14 mm 304不锈钢复板11道次变形至12 mm复合板的热轧过程,并应用有限元MARC软件二次开发技术建立了温度场模型。模拟结果表明,变形区内,复合板表面温度持续下降,界面温度略有升高;...基于弹塑性热力耦合有限元法研究了72 mm Q235钢基板和14 mm 304不锈钢复板11道次变形至12 mm复合板的热轧过程,并应用有限元MARC软件二次开发技术建立了温度场模型。模拟结果表明,变形区内,复合板表面温度持续下降,界面温度略有升高;变形区外,表面温度有所回升;随轧制过程进行,轧件高度方向温度梯度逐渐减小;界面处温度呈“S”形,变形区温度变化显著,且随轧制速度提高,升温明显。展开更多
文摘基于弹塑性热力耦合有限元法研究了72 mm Q235钢基板和14 mm 304不锈钢复板11道次变形至12 mm复合板的热轧过程,并应用有限元MARC软件二次开发技术建立了温度场模型。模拟结果表明,变形区内,复合板表面温度持续下降,界面温度略有升高;变形区外,表面温度有所回升;随轧制过程进行,轧件高度方向温度梯度逐渐减小;界面处温度呈“S”形,变形区温度变化显著,且随轧制速度提高,升温明显。