A novel process was proposed for synergistic extraction and separation of valuable elements from high-alumina fly ash.A thermodynamic analysis revealed that to achieve effective carbochlorination,it is crucial to cond...A novel process was proposed for synergistic extraction and separation of valuable elements from high-alumina fly ash.A thermodynamic analysis revealed that to achieve effective carbochlorination,it is crucial to conduct carbochlorination of the fly ash within the temperature range from 700 to 1000℃.The experimental results demonstrated that under the optimal conditions,the carbochlorination efficiency for Al,Si,Ca,Ti,and Mg exceeded 81.18%,67.62%,58.87%,82.15%,and 59.53%,respectively.The XRD patterns indicated that Al and Si in the mullite phase(Al_(6)Si_(2)O_(13))were chlorinated during the carbochlorination process,resulting in the formation of mullite mesophases(Al_(4.75)Si_(1.25)O_(9.63) and Al_(1.83)Si_(1.08)O_(4.85)).After the carbochlorination process,Al was accumulated as AlCl_(3) in the condenser,while SiCl_(4) and TiCl_(4) were enriched in the exhaust gas,and CaCl_(2),MgCl_(2),and unreacted oxides remained in the residue for further recycling.展开更多
Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the mol...Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.展开更多
A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore ma...A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.展开更多
For the clean and economical production of chromium compounds, it is crucial to remove aluminates from chromate alkali solutions and utilize aluminum-containing compounds. In this work, carbonization was used to remov...For the clean and economical production of chromium compounds, it is crucial to remove aluminates from chromate alkali solutions and utilize aluminum-containing compounds. In this work, carbonization was used to remove aluminates from a synthetic chromate leaching solution containing a high K2O/Al2O3 mole ratio. The influence of reaction temperature, carbonization time, flow rate of carbon dioxide, and seed ratio on the precipitation of Al was investigated. The optimal output was obtained under the following experimental conditions: a reaction temperature of 50 °C, a carbonization time of 100 min, a carbon dioxide flow rate of 0.1 L/min, and a seed ratio of 1.0. Gibbsite was obtained following carbonization. The structure and morphology of the gibbsite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and laser particle size analyzer. The particle size distribution and morphology of the gibbsite were significantly influenced by the experimental conditions. The gibbsite had a mean particle size (d50) of 16.72μm. The thermal decomposition of the gibbsite was analyzed by XRD and the decomposition path was determined. The obtained coarseα-Al2O3 precipitate, which contains 0.08% Cr2O3 and 0.10% K2O, was suitable for subsequent utilization.展开更多
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha...Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.展开更多
Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditio...Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.展开更多
The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities ...The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities still need to be improved at the PEMFC operating temperatures of 80–120 °C. In the present study, Au nanoparticles of average size 2.6 nm supported on ceria‐modified Al2O3 were synthesized and characterized using powder X‐ray diffraction, nitrogen physisorption, transmission electron and scanning transmission electron microscopies, temperature‐programmed hydrogen reduction (H2‐TPR), Raman spectroscopy, and in situ diffuse‐reflectance infrared Fourier‐transform spectroscopy. Highly dispersed Au nanoparticles and strong structures formed by Au–support in‐teractions were the main active species on the ceria surface. The Raman and H2‐TPR results show that the improved catalytic performance of the Au catalysts can be attributed to enhanced strong metal–support interactions and the reducibility caused by ceria doping. The formation of oxygen vacancies on the catalysts increased their activities in CO‐PROX. The synthesized Au catalysts gave excellent catalytic performances with high CO conversions (>97%) and CO2 selectivities (>50%) in the temperature range 80–150 °C.展开更多
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p...The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.展开更多
3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3...3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.展开更多
基金National Natural Science Foundation of China(22109085 and 21975142)Jiangsu Special fund project for transformation of scientific and technological achievements(BA2020058).
基金the National Natural Science Foundation of China (Nos.52304364,U1710257)the financial support of the National Key Research and Development Program of China (No.2022YFB3504502)。
文摘A novel process was proposed for synergistic extraction and separation of valuable elements from high-alumina fly ash.A thermodynamic analysis revealed that to achieve effective carbochlorination,it is crucial to conduct carbochlorination of the fly ash within the temperature range from 700 to 1000℃.The experimental results demonstrated that under the optimal conditions,the carbochlorination efficiency for Al,Si,Ca,Ti,and Mg exceeded 81.18%,67.62%,58.87%,82.15%,and 59.53%,respectively.The XRD patterns indicated that Al and Si in the mullite phase(Al_(6)Si_(2)O_(13))were chlorinated during the carbochlorination process,resulting in the formation of mullite mesophases(Al_(4.75)Si_(1.25)O_(9.63) and Al_(1.83)Si_(1.08)O_(4.85)).After the carbochlorination process,Al was accumulated as AlCl_(3) in the condenser,while SiCl_(4) and TiCl_(4) were enriched in the exhaust gas,and CaCl_(2),MgCl_(2),and unreacted oxides remained in the residue for further recycling.
基金Project (u0837604) supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan ProvinceProject (20095314110003) supported by the Special Research Funds of the Doctor Subject of Higher School,China
文摘Behaviors of TiO2 in the alumina carbothermic reduction and chlorination process in vacuum at different temperatures were investigated experimentally by means of XRD,SEM and EDS.In the preparation of materials,the molar ratio of Al2O3 to C was 1:4,and 10% TiO2 and excess AlCl3 were added.The results show that TiC is produced by C and TiO2 after TiO2 transforms from anatase into rutile gradually.In the temperature range of 1 763?1 783 K,the compounds of Ti and Al are not found in slags and condensate.The purity of aluminum reaches 98.35%,and TiO2 does not participate in alumina carbothermic reduction process and chlorination process in vacuum.
基金Project(51125018)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(51204153)supported by the National Natural Science Foundation of ChinaProject(2011BAC06B07)supported by the National High Technology Research and Development Program,China
文摘A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.
基金Project(51125018)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2011AA060704)supported by the National High-tech Research and Development Program of ChinaProjects(51204153,21406246)supported by the National Natural Science Foundation of China
文摘For the clean and economical production of chromium compounds, it is crucial to remove aluminates from chromate alkali solutions and utilize aluminum-containing compounds. In this work, carbonization was used to remove aluminates from a synthetic chromate leaching solution containing a high K2O/Al2O3 mole ratio. The influence of reaction temperature, carbonization time, flow rate of carbon dioxide, and seed ratio on the precipitation of Al was investigated. The optimal output was obtained under the following experimental conditions: a reaction temperature of 50 °C, a carbonization time of 100 min, a carbon dioxide flow rate of 0.1 L/min, and a seed ratio of 1.0. Gibbsite was obtained following carbonization. The structure and morphology of the gibbsite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and laser particle size analyzer. The particle size distribution and morphology of the gibbsite were significantly influenced by the experimental conditions. The gibbsite had a mean particle size (d50) of 16.72μm. The thermal decomposition of the gibbsite was analyzed by XRD and the decomposition path was determined. The obtained coarseα-Al2O3 precipitate, which contains 0.08% Cr2O3 and 0.10% K2O, was suitable for subsequent utilization.
基金Projects(51071107,51001080,51201056)supported by the National Natural Science Foundation of ChinaProject(2010CB934703)supported by the National Basic Research Program of China+1 种基金Project(13211027)supported by Science and Technology Plan Project of Hebei Province,ChinaProject(2011008)supported by Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology,China
文摘Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.
基金supported by the National Basic Research Program of China (973 Program, 2013CB934104)the National Natural Science Founda-tion of China (21225312, U1303192)~~
文摘The preferential oxidation of CO (CO‐PROX) is a hot topic because of its importance in pro‐ton‐exchange membrane fuel cells (PEMFCs). Au catalysts are highly active in CO oxidation. Howev‐er, their activities still need to be improved at the PEMFC operating temperatures of 80–120 °C. In the present study, Au nanoparticles of average size 2.6 nm supported on ceria‐modified Al2O3 were synthesized and characterized using powder X‐ray diffraction, nitrogen physisorption, transmission electron and scanning transmission electron microscopies, temperature‐programmed hydrogen reduction (H2‐TPR), Raman spectroscopy, and in situ diffuse‐reflectance infrared Fourier‐transform spectroscopy. Highly dispersed Au nanoparticles and strong structures formed by Au–support in‐teractions were the main active species on the ceria surface. The Raman and H2‐TPR results show that the improved catalytic performance of the Au catalysts can be attributed to enhanced strong metal–support interactions and the reducibility caused by ceria doping. The formation of oxygen vacancies on the catalysts increased their activities in CO‐PROX. The synthesized Au catalysts gave excellent catalytic performances with high CO conversions (>97%) and CO2 selectivities (>50%) in the temperature range 80–150 °C.
文摘The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.
文摘3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.