期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
由卫星磁异常推断西藏高原地壳的磁性特征 被引量:10
1
作者 张昌达 《地球物理学进展》 CSCD 2002年第2期325-330,共6页
根据前人对本区卫星和航空磁异常所作的研究工作 ,作者经过综合研究所得的结果是 :西藏高原地壳中的磁性层在地表以下 30km以内 ,其磁化率平均为 0 .0 16 7SI ,相当于Ⅰ—型花岗岩类的磁化率 .在 30km以下 。
关键词 地壳 性特征 西藏高原 卫星异常 ()卫星
下载PDF
Detection Methods for MEMS-Based Xylophone Bar Magnetometer for Pico Satellites
2
作者 Sylvain Ranvier Veronique Rochus +3 位作者 Sylvain Druart Herve Lamy Pierre Rochus Laurent A. Francis 《Journal of Mechanics Engineering and Automation》 2011年第5期342-350,共9页
Initially studied and developed by students in universities, the very small pico satellites (with a mass lower than 1 kg) are more and more considered for science applications. In particular, there are plans to use ... Initially studied and developed by students in universities, the very small pico satellites (with a mass lower than 1 kg) are more and more considered for science applications. In particular, there are plans to use them in constellations of small spacecraft for remote sensing of various regions of the magnetosphere. They require a payload with specific size, weight and power consumption. In order to respond to this demand, new instruments have to be developed. Those instruments should exhibit at least the same performances as those used in larger satellites while fulfilling the specific requirements imposed by the satellites size. For this reason, the authors currently develop a xylophone bar magnetometer (XBM) based on micro-electromechanical systems (MEMS) with integrated detector electronics. The principle of this magnetometer is based on a classical resonating xylophone bar. A sinnsoidal current oscillating at the fundamental bending resonant frequency of the bar is applied through the device, and when an external magnetic field is present, the resulting Lorentz force yields the bar to vibrate at its fundamental mode with a displacement directly proportional to the amplitude in one direction of the ambient magnetic field. When designing a MEMS XBM, the detection method is a crucial aspect. The measurement method largely influences the geometry of the magnetometer as well as the manufacturing technology. Due to the constraints in terms of size, weight and power consumption, the two most promising measurement methods are capacitive and piezoelectric ones. Several designs including these measurement techniques are presented and simulated under realistic conditions. First, designs including lateral electrodes for capacitive measurement are tackled based on Silicon-On-Insulator (SOI) process. For the piezoelectric detection, a new configuration based on Lead Zirconate Titanate (PZT)/Pt structure is introduced and leads to much better sensitivity than the traditional Pt/PZT/Pt sandwich structure. Finally, the principle of electronic circuits enabling high sensitivity and low power consumption are proposed. 展开更多
关键词 MAGNETOMETER MEMS (micro-electromechanical systems) pico satellites piezoelectric.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部