Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanom...Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanomagnets with different geometries, such as circle, square and rectangle, are studied for different directions of applied field. In the case of perpendicular field to the plane, the magnetization and MR are reversible and have not hysteresis. When the field is applied in the plane, the HL is irreversible and is qualitatively well agreeable with the current experimental results. The MR loop is also irreversible and appears two peaks distributed at two sides around zero field. The peaks of magnetic resistance are relative to the vortex state or similar configuration. Large easy-axis anisotropy will suppress the MC anisotropy, and the large magnetoresistance effect disappears.展开更多
Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless...Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.展开更多
The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory. An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and...The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory. An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism. By comparing the formation energies for Na, Bi and Ti vacancy, the Na vacancy is more stable than the others. Therefore, we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy. Among the five physisorption configurations we considered, the most likely adsorption position is Na vacancy. The O2 adsorption enhances the magnetism of the system. The contribution of spin polarization is mainly from the O 2p orbitals. The characteristics of exchange coupling are also calculated, which show that the ferromagnetic coupling is favorable. Compared with the previous calculation results, our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably, because of taking into account adsorbed oxygen and cation vacancies. Moreover, our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.展开更多
文摘Based on a classical Heisenberg lattice model with dipole-dipole interaction and the method of spin dynamic simulation, the magnetic configurations (MC), hysteresis loops (HL) and magnetic resistance (MR) of the nanomagnets with different geometries, such as circle, square and rectangle, are studied for different directions of applied field. In the case of perpendicular field to the plane, the magnetization and MR are reversible and have not hysteresis. When the field is applied in the plane, the HL is irreversible and is qualitatively well agreeable with the current experimental results. The MR loop is also irreversible and appears two peaks distributed at two sides around zero field. The peaks of magnetic resistance are relative to the vortex state or similar configuration. Large easy-axis anisotropy will suppress the MC anisotropy, and the large magnetoresistance effect disappears.
基金Project(2009AA04Z209) supported by the National High Technology Research and Development Program of ChinaProject(R1090674) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(51075363) supported by the National Natural Science Foundation of China
文摘Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
基金supported by the National Natural Science Foundation of China (No.11547176, No.11704006)Henan College Key Research Project (No.15A140017)
文摘The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory. An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism. By comparing the formation energies for Na, Bi and Ti vacancy, the Na vacancy is more stable than the others. Therefore, we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy. Among the five physisorption configurations we considered, the most likely adsorption position is Na vacancy. The O2 adsorption enhances the magnetism of the system. The contribution of spin polarization is mainly from the O 2p orbitals. The characteristics of exchange coupling are also calculated, which show that the ferromagnetic coupling is favorable. Compared with the previous calculation results, our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably, because of taking into account adsorbed oxygen and cation vacancies. Moreover, our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.