基于光磁耦合试验系统,利用新型复合磁性光催化剂,研究亚甲基蓝废水的降解性能,并讨论磁场强度、旋转速度、反应时间以及催化剂投加量对光磁耦合反应的影响.结果表明:旋转磁场能够显著加强光催化降解亚甲基蓝效果,当磁场强度为50 m T,...基于光磁耦合试验系统,利用新型复合磁性光催化剂,研究亚甲基蓝废水的降解性能,并讨论磁场强度、旋转速度、反应时间以及催化剂投加量对光磁耦合反应的影响.结果表明:旋转磁场能够显著加强光催化降解亚甲基蓝效果,当磁场强度为50 m T,转速为70 r·min-1,反应时间为120min,催化剂投加量为1.2 g·L-1条件下,光磁耦合处理系统对初始质量浓度为10 mg·L-1亚甲基蓝溶液的降解率为93.02%.通过对反应前后溶液的紫外-可见光扫描,发现经过光磁耦合处理系统作用反应后的溶液中,偶氮键与苯环特征峰均已消失,大部分亚甲基蓝得到有效降解.展开更多
The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polariton...The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm^640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.展开更多
We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the ...We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.展开更多
According to the perturbation theory, the coupled-mode equations for guided optical waves in the magneto-optical fiber Bragg gratings (MFBGs) under non-uniform magnetic field are derived. The equivalent relation bet...According to the perturbation theory, the coupled-mode equations for guided optical waves in the magneto-optical fiber Bragg gratings (MFBGs) under non-uniform magnetic field are derived. The equivalent relation between the magnetically- induced non-uniform fiber Bragg grating (MuFBG) and the corresponding non-magnetic chirped grating is expressed and verified by the piecewise-uniform MFBG model under linear magnetic field. On the basis of the equivalent relation, the MnFBGs can be effectively investigated by means of simulations. The characteristics of the MnFBGs under three typical magnetic field distributions with application to optical pulse compression are simulated, and the minimal pulse width can be achieved for the same magneto-optical coupling parameter of 2.2 ×10^3 m^-1.展开更多
基金National Natural Science Foundation of China(69576006)
文摘The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm^640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.
基金Supported by the Natural Science Foundation of China under Grant Nos.10575040,90503010,10634060,and 10874050 National Basic Research Program of China under Grant No.2005CB724508+1 种基金the Foundation from the Ministry of the National Education of China under Grant No.200804870051 the Science Innovation Foundation of Huazhong University of Science and Technology under Grant No.HF-06-010-08-012
文摘We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.
基金supported by the National High Technology Research and Development Program of China (No.2009AA01Z216)the National Basic Research Program of China (No.2011CB301703)the Program for New Century Excellent Talents in University (No.NCET-2008)
文摘According to the perturbation theory, the coupled-mode equations for guided optical waves in the magneto-optical fiber Bragg gratings (MFBGs) under non-uniform magnetic field are derived. The equivalent relation between the magnetically- induced non-uniform fiber Bragg grating (MuFBG) and the corresponding non-magnetic chirped grating is expressed and verified by the piecewise-uniform MFBG model under linear magnetic field. On the basis of the equivalent relation, the MnFBGs can be effectively investigated by means of simulations. The characteristics of the MnFBGs under three typical magnetic field distributions with application to optical pulse compression are simulated, and the minimal pulse width can be achieved for the same magneto-optical coupling parameter of 2.2 ×10^3 m^-1.