fMRI (Functional Magnetic Resonance Imaging) is a relatively new technique that uses MRI (Magnetic Resonance Imaging) to measure the hemodynamic response (change in blood flow) related to neural activity in the ...fMRI (Functional Magnetic Resonance Imaging) is a relatively new technique that uses MRI (Magnetic Resonance Imaging) to measure the hemodynamic response (change in blood flow) related to neural activity in the brain. This paper aims to explore and identify the obstacles facing the implementation and applications of IMRI in radiology departments within Jeddah city by analyzing related data received by direct questionnaires and interviews with all the people working in MRI units in Jeddah city and finds that the major obstacle is lacking of awareness of fMRI among medical professionals and their training.展开更多
The fixed-point algorithm and infomax algorithm are two of the most popular algorithms in independent component analysis(ICA).However,it is hard to take both stability and speed into consideration in processing functi...The fixed-point algorithm and infomax algorithm are two of the most popular algorithms in independent component analysis(ICA).However,it is hard to take both stability and speed into consideration in processing functional magnetic resonance imaging(fMRI)data.In this paper,an optimization model for ICA is presented and an improved fixed-point algorithm based on the model is proposed.In the new algorithms a small step size is added to increase the stability.In order to accelerate the convergence,an improvement on Newton method is made,which makes cubic convergence for the new algorithm.Applying the algorithm and two other algorithms to invivo fMRI data,the results show that the new algorithm separates independent components stably,which has faster convergence speed and less computation than the other two algorithms.The algorithm has obvious advantage in processing fMRI signal with huge data.展开更多
Although many functional magnetic resonance imaging(f MRI) studies have investigated the neurophysiology of attention deficit hyperactivity disorder(ADHD),the existing studies have not yielded consistent findings.This...Although many functional magnetic resonance imaging(f MRI) studies have investigated the neurophysiology of attention deficit hyperactivity disorder(ADHD),the existing studies have not yielded consistent findings.This may be related to the different properties of different frequency bands. To investigate the frequency-specific regional homogeneity(Re Ho) of spontaneous neural activities in ADHD, the current study used resting-state f MRI to explore the Re Ho properties of five frequency bands, slow-5(0.01–0.027 Hz), slow-4(0.027–0.073 Hz),slow-3(0.073–0.198 Hz), slow-2(0.198–0.25 Hz) and the extra-low frequency(0–0.01 Hz), in 30 drug-naive boys with ADHD and 30 healthy controls. Compared with controls, the ADHD group showed decreased Re Ho in the default mode network(DMN) including the medial prefrontal cortex and precuneus, middle frontal gyrus and angular gyrus. ADHD patients also showed increased Re Ho in the posterior cerebellum. Significant interactions between frequency band and group were observed predominantly in the dorsolateral prefrontal and parietal cortices, orbital frontal cortex, supplementary motor area,inferior occipital gyrus, thalamus and anterior cerebellum.In particular, we found that the between-group difference in the extra-low frequency band(0–0.01 Hz) seemed to be greater than that in the other frequency bands for most brain regions. The findings suggest that ADHD children display widespread abnormalities in regional brain activity,particularly in the DMN and attention network, and these abnormalities show frequency specificity.展开更多
文摘fMRI (Functional Magnetic Resonance Imaging) is a relatively new technique that uses MRI (Magnetic Resonance Imaging) to measure the hemodynamic response (change in blood flow) related to neural activity in the brain. This paper aims to explore and identify the obstacles facing the implementation and applications of IMRI in radiology departments within Jeddah city by analyzing related data received by direct questionnaires and interviews with all the people working in MRI units in Jeddah city and finds that the major obstacle is lacking of awareness of fMRI among medical professionals and their training.
文摘The fixed-point algorithm and infomax algorithm are two of the most popular algorithms in independent component analysis(ICA).However,it is hard to take both stability and speed into consideration in processing functional magnetic resonance imaging(fMRI)data.In this paper,an optimization model for ICA is presented and an improved fixed-point algorithm based on the model is proposed.In the new algorithms a small step size is added to increase the stability.In order to accelerate the convergence,an improvement on Newton method is made,which makes cubic convergence for the new algorithm.Applying the algorithm and two other algorithms to invivo fMRI data,the results show that the new algorithm separates independent components stably,which has faster convergence speed and less computation than the other two algorithms.The algorithm has obvious advantage in processing fMRI signal with huge data.
基金supported by the National Basic Research Development Program of China(2014CB846104)the National Natural Science Foundation of China(81371496+3 种基金3097080281101014)the Program for New Century Excellent Talents in University(NCET-11-0013)supported by the‘‘Qian Jiang Distinguished Professor’’Program
文摘Although many functional magnetic resonance imaging(f MRI) studies have investigated the neurophysiology of attention deficit hyperactivity disorder(ADHD),the existing studies have not yielded consistent findings.This may be related to the different properties of different frequency bands. To investigate the frequency-specific regional homogeneity(Re Ho) of spontaneous neural activities in ADHD, the current study used resting-state f MRI to explore the Re Ho properties of five frequency bands, slow-5(0.01–0.027 Hz), slow-4(0.027–0.073 Hz),slow-3(0.073–0.198 Hz), slow-2(0.198–0.25 Hz) and the extra-low frequency(0–0.01 Hz), in 30 drug-naive boys with ADHD and 30 healthy controls. Compared with controls, the ADHD group showed decreased Re Ho in the default mode network(DMN) including the medial prefrontal cortex and precuneus, middle frontal gyrus and angular gyrus. ADHD patients also showed increased Re Ho in the posterior cerebellum. Significant interactions between frequency band and group were observed predominantly in the dorsolateral prefrontal and parietal cortices, orbital frontal cortex, supplementary motor area,inferior occipital gyrus, thalamus and anterior cerebellum.In particular, we found that the between-group difference in the extra-low frequency band(0–0.01 Hz) seemed to be greater than that in the other frequency bands for most brain regions. The findings suggest that ADHD children display widespread abnormalities in regional brain activity,particularly in the DMN and attention network, and these abnormalities show frequency specificity.