Gd doped hollow nanoscale coordination polymers with multimodal imaging capabilities were synthesized by solvothermal method and further coated by silica layer.The in vitro tests demonstrated uncoated and silica-coate...Gd doped hollow nanoscale coordination polymers with multimodal imaging capabilities were synthesized by solvothermal method and further coated by silica layer.The in vitro tests demonstrated uncoated and silica-coated nanoprobes exhibit longitudinal relaxivities(r1)of 7.38 and 13.57(mmol/L)-1·s-1,and transverse relaxivities(r2)of 180.6 and 304.8(mmol/L)-1·s-1,showing fairly good dual T1&T2 contrast effects,and it also emits excellent multicolor uorescence under laser beams of various wavelengths.With the com-bination of magnetic resonance imaging(MRI)(both T1 and T2)and uorescence optical imaging(FOI),the nanoprobes could correlate preoperative diagnosis with intraoperative pathology.Furthermore,it also exhibits high drug loading capacity of 1166 mg/g and en-capsulation efficiency of 83.29%,which makes it a potential platform as drug carriers.The MTT assay demonstrates the moderate toxicity of the NPs,and after the silica coating process,not only the MRI contrast effects but also the biocompatibility have been enhanced.The versatility of the highly integrated systems can make up for the limitations of each imaging modality and exhibit great potentials for cancer theranostics.展开更多
Magnetic nanoparticles have emerged as a powerful tool for magnetic resonance imaging, biodetection, drug delivery, and hyperthermia. This review focuses on the biological detection of magnetic nanoparticles as well a...Magnetic nanoparticles have emerged as a powerful tool for magnetic resonance imaging, biodetection, drug delivery, and hyperthermia. This review focuses on the biological detection of magnetic nanoparticles as well as their physicochemical properties. Substantial progress in the sensitivity of detection has been made by developing variety of methods. Five applications of magnetic nanoparticles in biological detection are discussed in this review: magnetic separation, magnetic sensing, magnetic manipulation, magnetic catalysis, and signal enhancer for surface plasmon resonance(SPR). Finally, some future trends and perspectives in these research areas are outlined.展开更多
Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanoc...Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L^-1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplat- lk)rm for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with flee DOX.HCI. Under a 3.0-T MRI scanner, Mn-SPIO/ DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s^-1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.展开更多
Magnetic nanopartides have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics...Magnetic nanopartides have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8- ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T2 MRI signal intensity and can be used as a MR/contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.展开更多
基金supported by the National Natural Science Foundation of China (No.21571168)the Ministry of Science and Technology Grant (No.2016YFA0101202, No.U1232211,and No.31501130)CAS/SAFEA international partnership program for creative research teams and CAS Hefei Science Center (No.2016HSCIU011)
文摘Gd doped hollow nanoscale coordination polymers with multimodal imaging capabilities were synthesized by solvothermal method and further coated by silica layer.The in vitro tests demonstrated uncoated and silica-coated nanoprobes exhibit longitudinal relaxivities(r1)of 7.38 and 13.57(mmol/L)-1·s-1,and transverse relaxivities(r2)of 180.6 and 304.8(mmol/L)-1·s-1,showing fairly good dual T1&T2 contrast effects,and it also emits excellent multicolor uorescence under laser beams of various wavelengths.With the com-bination of magnetic resonance imaging(MRI)(both T1 and T2)and uorescence optical imaging(FOI),the nanoprobes could correlate preoperative diagnosis with intraoperative pathology.Furthermore,it also exhibits high drug loading capacity of 1166 mg/g and en-capsulation efficiency of 83.29%,which makes it a potential platform as drug carriers.The MTT assay demonstrates the moderate toxicity of the NPs,and after the silica coating process,not only the MRI contrast effects but also the biocompatibility have been enhanced.The versatility of the highly integrated systems can make up for the limitations of each imaging modality and exhibit great potentials for cancer theranostics.
基金supported by the National Natural Science Foundation of China(2014M561073,51173139)the Program for Young Outstanding Scientists of Institute of Chemistry,and the Chinese Academy of Science(Y41Z011)
文摘Magnetic nanoparticles have emerged as a powerful tool for magnetic resonance imaging, biodetection, drug delivery, and hyperthermia. This review focuses on the biological detection of magnetic nanoparticles as well as their physicochemical properties. Substantial progress in the sensitivity of detection has been made by developing variety of methods. Five applications of magnetic nanoparticles in biological detection are discussed in this review: magnetic separation, magnetic sensing, magnetic manipulation, magnetic catalysis, and signal enhancer for surface plasmon resonance(SPR). Finally, some future trends and perspectives in these research areas are outlined.
基金supported by the National Basic Research Program of China(2013CB933903)the National Key Technology Research and Development Program(2012BAI23B08)+1 种基金the National Natural Science Foundation of China(51173117)the Scientific Research Start-up Fund of Kunming University of Science and Technology(KKSY201305089)
文摘Multifunctional nanoparticles combining diagnostic and therapeutic agents into a single platform make cancer theranostics possible and have attracted wide interests in the field. In this study, a multifunctional nanocomposite based on dextran and superparamagnetic iron oxide nanoparticles (SPIO) was prepared for drug delivery and magnetic resonance imaging (MRI). Amphiphilic dextran was synthesized by grafting stearyl acid onto the carbohydrate backbone, and micelle was formed by the resulted amphiphilic dextran with low critical micelle concentration at 1.8 mg L^-1. Doxorubicin (DOX) and a cluster of the manganese-doped iron oxide nanoparticles (Mn-SPIO) nanocrystals were then coencapsulated successfully inside the core of dextran micelles, resulting in nanocomposites with diameter at about 100 nm. Cell culture experiments demonstrated the potential of these Mn-SPIO/DOX nanocomposites as an effective multifunctional nanoplat- lk)rm for the delivery of anticancer drug DOX with a loading content (DLC) of 16 %. Confocal laser scanning microscopy reveals that the Mn-SPIO/DOX had excellent internalization ability against MCF-7/Adr cells after 2-h labeling compared with flee DOX.HCI. Under a 3.0-T MRI scanner, Mn-SPIO/ DOX nanocomposite-labeled cells in gelatin phantom show much darker images than the control. Their transverse relaxation (T2) rate is also significantly higher than that of the control cells (33.9 versus 2.3 s^-1). Our result offers an effective strategy to treat MCF-7/Adr at optimized low dosages with imaging capability.
基金Acknowledgements This research was supported in part by the National Basic Research Program of China (973 Program, Nos. 2013CB733802 and 2010CB934602) the National Science Foundation of China (NSFC, Nos. 81101101, 81201086, 81201129, 81201190, 51273165, 51172005 and 81028009)+1 种基金 the Chinese Academy of Sciences Professorship for Senior International Scientists (No. 2011T2J06) and the Intramural Research Program (IRP) of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). R. X. is partially supported by the China Scholarship Council.
文摘Magnetic nanopartides have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8- ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T2 MRI signal intensity and can be used as a MR/contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.