The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc...The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
Objective To evaluate the efficacy of contrast enhanced dynamic MRI in differentiating solitary pulmonary nodules(SPNs). Methods Eighty-three patients with SPNs undertaken contrast enhanced dynamic MRI. Time-signal ...Objective To evaluate the efficacy of contrast enhanced dynamic MRI in differentiating solitary pulmonary nodules(SPNs). Methods Eighty-three patients with SPNs undertaken contrast enhanced dynamic MRI. Time-signal intensity curve (T-SI Curve) was made. Peak height (PH) , steepest slope (SS), maximum enhancement ( Emax ) and the enhancement rates of signal intensity were recorded at the frst ( E1 ), second ( E2 ), third ( E3 ) , fourth ( E4 ) , fifth (E5), and sixth ( E6 ) minute after injection. Results Malignant nodules and inflammatory nodules enhanced significantly higher than benign nodules, and malignant nodules and inflammatory nodules showed obviously higher PH, SS, Emax, El-E6 values than benign nodules ( P 〈 0. 01 ). There were no sig- nificant differences in PH, SS, Emax, E1-E6 values between malignant nodules and inflammatory nodules (P 〉 0. 05). Conclusion Contrast enhanced dynamic MR imaging can provide SPNs' hemodynamic information and is helpful in differentiating SPNs.展开更多
AIM: To investigate the hemodynamic changes in a precancerous lesion model of hepatocellular carcinoma (HCC). METHODS: Hemodynamic changes in 18 Wistar rats were studied with non-invasive magnetic resonance (MR) perfu...AIM: To investigate the hemodynamic changes in a precancerous lesion model of hepatocellular carcinoma (HCC). METHODS: Hemodynamic changes in 18 Wistar rats were studied with non-invasive magnetic resonance (MR) perfusion. The changes induced by diethylnitrosamine (DEN) developed into liver nodular lesions due to hepatic cirrhosis during the progression of carcinogenesis. The MR perfusion data [positive enhancement integral (PEI)] were compared between the nodular lesions corresponding well with MR images and pathology and their surrounding hepatic parenchyma. RESULTS: A total of 46 nodules were located by MR imaging and autopsy, including 22 dysplastic nodules (DN), 9 regenerative nodules (RN), 10 early HCCs and 5 overt HCCs. Among the 22 DNs, 6 were low-grade DN (lGDN) and 16 were high-grade DN (HGDN). The average PEI of RN, DN, early and overt HCC was 205.67 ± 31.17, 161.94 ± 20.74, 226.09 ± 34.83, 491.86 ± 44.61 respectively, and their liver parenchyma nearby was 204.84 ± 70.19. Comparison of the blood perfusion index between each RN and its surrounding hepatic parenchyma showed no statistically significant difference (P = 0.06). There were significant differences in DN (P = 0.02). During the late hepatic arterial phase, the perfusion curve in DN declined. DN had an iso-signal intensity at the early hepatic arterial phase and a low signal intensity at the portal venous phase. Of the 10early HCCs, 4 demonstrated less blood perfusion and 6 displayed minimally increased blood flow compared to the surrounding parenchyma. Five HCCs showed significantly increased blood supply compared to the surrounding parenchyma (P = 0.02). CONCLUSION: Non-invasive MR perfusion can detect changes in blood supply of precancerous lesions.展开更多
Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394kJ·mol-1 and 0.1204kJ·mol-1 for ...Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394kJ·mol-1 and 0.1204kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively. When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1, -311.18kJ·mol-1 and -345.83kJ·mol-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.展开更多
Objective Typically,the transcranial approach has been used for the treatment of craniopharyngiomas with suprasellar extension,whereas the transsphenoidal approach has been used mostly for infradiaphragmatic craniopha...Objective Typically,the transcranial approach has been used for the treatment of craniopharyngiomas with suprasellar extension,whereas the transsphenoidal approach has been used mostly for infradiaphragmatic craniopharyngioma.Total resection of craniopharyngioma can reduce the recurrence rate,especially in young children,but it may lead to severe complications.Therefore,any benefit of the degree of resection must be weighed against the risk of complications by the surgeons.The purpose of this study was to explore the therapeutic outcome after transsphenoidal microsurgical treatment of infradiaphragmatic craniopharyngioma and share our experiences.Methods Between January 2003 and June 2013,30 patients with infradiaphragmatic craniopharyngioma underwent transsphenoidal microsurgical resection in our hospital.The neurological,visual,and endocrine functions,and extent of resection were analyzed retrospectively.Recurrence or growth of residual tumor tissue during follow-up was assessed using magnetic resonance imaging(MRI).Results Total resection was achieved in 25 patients(83.3%),subtotal resection was achieved in 4 patients(13.3%),and partial resection was achieved in 1 patient(3.4%).There were no perioperative deaths.Cerebrospinal fluid(CSF) leakage occurred in 6 patients,and among them,2 required surgical repair of the sella.New-onset postoperative diabetes insipidus(DI) developed in 8 patients.Vision and visual fields were improved at different levels in 13 out of 16 patients who had sight impediments before treatment.Tumor recurrence and regrowth was observed in 2 patients;1 patient underwent transsphenoidal reoperation,the condition of the other patient who had undergone several craniotomies grew worse over the 6-month follow-up period.Conclusion Transsphenoidal surgery is an ideal choice in treating infradiaphragmatic craniopharyngioma.The transsphenoidal approach,which preserves pituitary function and avoids damage to the hypothalamic structures and optic nerve,is associated with fewer complications than the transcranial approach and a low mortality rate.展开更多
The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR...The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.展开更多
fMRI (Functional Magnetic Resonance Imaging) is a relatively new technique that uses MRI (Magnetic Resonance Imaging) to measure the hemodynamic response (change in blood flow) related to neural activity in the ...fMRI (Functional Magnetic Resonance Imaging) is a relatively new technique that uses MRI (Magnetic Resonance Imaging) to measure the hemodynamic response (change in blood flow) related to neural activity in the brain. This paper aims to explore and identify the obstacles facing the implementation and applications of IMRI in radiology departments within Jeddah city by analyzing related data received by direct questionnaires and interviews with all the people working in MRI units in Jeddah city and finds that the major obstacle is lacking of awareness of fMRI among medical professionals and their training.展开更多
磁层中的超低频波动(Ultra Low Frequency Wave,简称ULF波)通常被认为是由外界太阳风/行星际磁场扰动或者磁层内部的等离子体不稳定性激发的.当太阳风动压脉冲作用于磁层顶时,可能在磁层内部激发ULF波,从而将太阳风能量输运到地球磁层中...磁层中的超低频波动(Ultra Low Frequency Wave,简称ULF波)通常被认为是由外界太阳风/行星际磁场扰动或者磁层内部的等离子体不稳定性激发的.当太阳风动压脉冲作用于磁层顶时,可能在磁层内部激发ULF波,从而将太阳风能量输运到地球磁层中.本文利用磁流体力学(MHD)数值模拟研究不同形式的太阳风动压脉冲作用下,在磁层中激发的ULF波的性质.我们主要关注地球磁层对太阳风动压正/负脉冲以及太阳风动压正-负脉冲对的响应.模拟结果表明,幅度和周期均相同的太阳风动压正脉冲和负脉冲,在磁层中所激发的ULF波幅度,周期均相同,然而相位相差180°.另外,对一个太阳风动压正-负脉冲对作用于偶极磁层的情况,在地球磁层内的某些特定区域仍可观察到磁力线共振(FLRs)现象,磁力线共振的区域分布和动压脉冲的周期以及动压脉冲对之间的时间间隔有关.同时模拟计算结果还表明,与单一脉冲相比较而言,在动压脉冲对的作用下,太阳风能量可以传递到地球磁层中更低纬度的区域.因此本文结果可以帮助我们更好地理解太阳风能量通过ULF波形式输运到地球磁层的机制;同时,还可以为研究有关内磁层中能量粒子对不同的行星际激波的响应方式提供线索.展开更多
Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with gl...Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.展开更多
Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling differ...Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.展开更多
基金Project(50974090)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20140418182819155,JCYJ20130329113849606)supported by the Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program,China
文摘The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
文摘Objective To evaluate the efficacy of contrast enhanced dynamic MRI in differentiating solitary pulmonary nodules(SPNs). Methods Eighty-three patients with SPNs undertaken contrast enhanced dynamic MRI. Time-signal intensity curve (T-SI Curve) was made. Peak height (PH) , steepest slope (SS), maximum enhancement ( Emax ) and the enhancement rates of signal intensity were recorded at the frst ( E1 ), second ( E2 ), third ( E3 ) , fourth ( E4 ) , fifth (E5), and sixth ( E6 ) minute after injection. Results Malignant nodules and inflammatory nodules enhanced significantly higher than benign nodules, and malignant nodules and inflammatory nodules showed obviously higher PH, SS, Emax, El-E6 values than benign nodules ( P 〈 0. 01 ). There were no sig- nificant differences in PH, SS, Emax, E1-E6 values between malignant nodules and inflammatory nodules (P 〉 0. 05). Conclusion Contrast enhanced dynamic MR imaging can provide SPNs' hemodynamic information and is helpful in differentiating SPNs.
基金the grants from Foundation of Ministry of Public Health of China, No. 20011420National Natural Science Foundation of China, No. 30470503
文摘AIM: To investigate the hemodynamic changes in a precancerous lesion model of hepatocellular carcinoma (HCC). METHODS: Hemodynamic changes in 18 Wistar rats were studied with non-invasive magnetic resonance (MR) perfusion. The changes induced by diethylnitrosamine (DEN) developed into liver nodular lesions due to hepatic cirrhosis during the progression of carcinogenesis. The MR perfusion data [positive enhancement integral (PEI)] were compared between the nodular lesions corresponding well with MR images and pathology and their surrounding hepatic parenchyma. RESULTS: A total of 46 nodules were located by MR imaging and autopsy, including 22 dysplastic nodules (DN), 9 regenerative nodules (RN), 10 early HCCs and 5 overt HCCs. Among the 22 DNs, 6 were low-grade DN (lGDN) and 16 were high-grade DN (HGDN). The average PEI of RN, DN, early and overt HCC was 205.67 ± 31.17, 161.94 ± 20.74, 226.09 ± 34.83, 491.86 ± 44.61 respectively, and their liver parenchyma nearby was 204.84 ± 70.19. Comparison of the blood perfusion index between each RN and its surrounding hepatic parenchyma showed no statistically significant difference (P = 0.06). There were significant differences in DN (P = 0.02). During the late hepatic arterial phase, the perfusion curve in DN declined. DN had an iso-signal intensity at the early hepatic arterial phase and a low signal intensity at the portal venous phase. Of the 10early HCCs, 4 demonstrated less blood perfusion and 6 displayed minimally increased blood flow compared to the surrounding parenchyma. Five HCCs showed significantly increased blood supply compared to the surrounding parenchyma (P = 0.02). CONCLUSION: Non-invasive MR perfusion can detect changes in blood supply of precancerous lesions.
文摘Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394kJ·mol-1 and 0.1204kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively. When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1, -311.18kJ·mol-1 and -345.83kJ·mol-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.
基金Supported by the grants from the National Clinical Key Specialty Construction Project and National Natural Science Foundation of China(No.81270865)
文摘Objective Typically,the transcranial approach has been used for the treatment of craniopharyngiomas with suprasellar extension,whereas the transsphenoidal approach has been used mostly for infradiaphragmatic craniopharyngioma.Total resection of craniopharyngioma can reduce the recurrence rate,especially in young children,but it may lead to severe complications.Therefore,any benefit of the degree of resection must be weighed against the risk of complications by the surgeons.The purpose of this study was to explore the therapeutic outcome after transsphenoidal microsurgical treatment of infradiaphragmatic craniopharyngioma and share our experiences.Methods Between January 2003 and June 2013,30 patients with infradiaphragmatic craniopharyngioma underwent transsphenoidal microsurgical resection in our hospital.The neurological,visual,and endocrine functions,and extent of resection were analyzed retrospectively.Recurrence or growth of residual tumor tissue during follow-up was assessed using magnetic resonance imaging(MRI).Results Total resection was achieved in 25 patients(83.3%),subtotal resection was achieved in 4 patients(13.3%),and partial resection was achieved in 1 patient(3.4%).There were no perioperative deaths.Cerebrospinal fluid(CSF) leakage occurred in 6 patients,and among them,2 required surgical repair of the sella.New-onset postoperative diabetes insipidus(DI) developed in 8 patients.Vision and visual fields were improved at different levels in 13 out of 16 patients who had sight impediments before treatment.Tumor recurrence and regrowth was observed in 2 patients;1 patient underwent transsphenoidal reoperation,the condition of the other patient who had undergone several craniotomies grew worse over the 6-month follow-up period.Conclusion Transsphenoidal surgery is an ideal choice in treating infradiaphragmatic craniopharyngioma.The transsphenoidal approach,which preserves pituitary function and avoids damage to the hypothalamic structures and optic nerve,is associated with fewer complications than the transcranial approach and a low mortality rate.
文摘The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.
文摘fMRI (Functional Magnetic Resonance Imaging) is a relatively new technique that uses MRI (Magnetic Resonance Imaging) to measure the hemodynamic response (change in blood flow) related to neural activity in the brain. This paper aims to explore and identify the obstacles facing the implementation and applications of IMRI in radiology departments within Jeddah city by analyzing related data received by direct questionnaires and interviews with all the people working in MRI units in Jeddah city and finds that the major obstacle is lacking of awareness of fMRI among medical professionals and their training.
文摘磁层中的超低频波动(Ultra Low Frequency Wave,简称ULF波)通常被认为是由外界太阳风/行星际磁场扰动或者磁层内部的等离子体不稳定性激发的.当太阳风动压脉冲作用于磁层顶时,可能在磁层内部激发ULF波,从而将太阳风能量输运到地球磁层中.本文利用磁流体力学(MHD)数值模拟研究不同形式的太阳风动压脉冲作用下,在磁层中激发的ULF波的性质.我们主要关注地球磁层对太阳风动压正/负脉冲以及太阳风动压正-负脉冲对的响应.模拟结果表明,幅度和周期均相同的太阳风动压正脉冲和负脉冲,在磁层中所激发的ULF波幅度,周期均相同,然而相位相差180°.另外,对一个太阳风动压正-负脉冲对作用于偶极磁层的情况,在地球磁层内的某些特定区域仍可观察到磁力线共振(FLRs)现象,磁力线共振的区域分布和动压脉冲的周期以及动压脉冲对之间的时间间隔有关.同时模拟计算结果还表明,与单一脉冲相比较而言,在动压脉冲对的作用下,太阳风能量可以传递到地球磁层中更低纬度的区域.因此本文结果可以帮助我们更好地理解太阳风能量通过ULF波形式输运到地球磁层的机制;同时,还可以为研究有关内磁层中能量粒子对不同的行星际激波的响应方式提供线索.
基金This work was supported by the National Key Research and Development Program of China(2018YFA0704003)the Basic Research Program of Shenzhen(JCYJ20180305163452667,JCYJ20180507182413022,and JCYJ20170412111100742)+3 种基金the National Natural Science Foundation of China(81903564,31771036,51703132,and 21874119)the Guangdong Provincial Natural Science Foundation of Major Basic Research and Cultivation Project(2018B030308003)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161032)We thank Instrumental Analysis Center of Shenzhen University(Lihu Campus).
文摘Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.
基金supports by the Key Research Program of National Natural Science Foundation of China(Grant No. 10832009)
文摘Thickness effects on the ME coefficient αME and electromechanical resonance frequency of Metglas/PZT/Metglas tri-layered laminates are investigated. The thickness of the magnetic plate is changed by assembling different numbers of the Metglas thin sheets (30μm for each layer) while the PZT plate is maintained at constant thickness (0.5 mm). At 1 kHz of the applied alter- nating magnetic field, only one peak presents in the ME coefficient (OCME) versus static magnetic field (Hs) curve. As the thickness ratio n increases, the peak value of αME first increases and reaches a maximum at approximately n = 0.519, and then decreases afterward. The peak position (Hoptim) moves steadily toward a higher value as n increases. It is suggested that the re- laxation factor k of the magnetic phase is reduced as n increases, causing the decrease of the piezomagnetic coefficient d11,m and the increase of Hoptim. By employing the micromechanics model and considering the degradation of dll,m with n, an opti- mized thickness ratio of 0.5 is predicted, which is in agreement with the experimental observations. The resonance frequency of the laminate increases with n, which is consistent with the calculation using a straightforward mixture law.