The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc...The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.展开更多
Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by...In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min.展开更多
Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change...Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change glass transitiontemperature and onset crystallization temperature,while it enhances liquidus temperature.The addition of Cr improves the GFA ofthe(Fe74Nb6B20)100?xCrx glassy alloys compared to that in Cr-free Fe?Nb?B alloys,in which the supercooled liquid region(ΔTx),Trgandγare found to be50?54K,0.526?0.538,and0.367?0.371,respectively.The(Fe74Nb6B20)100?xCrx glassy alloys exhibit excellentsoft magnetic properties with high saturation magnetization of139?161A·m2/kg and low coercivity of30.24?58.9A/m.PresentFe?Nb?B?Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make themsuitable for magnetic components for engineering application.展开更多
In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magne...In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.展开更多
The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fra...The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fraction). Mixtures of Al-Fe were compacted and sintered in a vacuum furnace at 600 °C for 1 h. X-ray diffraction(XRD) of the samples containing 5% and 10% Fe indicates the presence of Al and Fe peaks, while sample containing 15% Fe reveals Al and Al13Fe4 peaks. The results show that both densification and thermal conductivity of the composites decrease by increasing the iron content. The presence of iron in the composite improves the compressive strength and the hardness. The strengthening mechanism is associated with the grain refinement of the matrix and uniform distribution of the Fe particles, as well as the formation of Al13Fe4 intermetallic. The measured magnetization values are equal to 0.3816×10-3 A·m2/g for 5% Fe sample and increases up to 0.6597×10-3 A·m2/g for 10% Fe sample, then decreases to 0.0702×10-3 A·m2/g for 15% Fe sample. This can be explained by the formation of the diamagnetic Al13Fe4 intermetallic compound in the higher Fe content sample detected by XRD analysis.展开更多
The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remark...The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remarkably but also can enhance both tensile strength and ductility values of Al-6%Si alloy. SEM graphs show that coarse dendrite structure was broken up into a somewhat globular structure, and the morphology of eutectic silicon was changed from flaky to fibrous under electromagnetic vibration treatment. The refine mechanism under electromagnetic vibration was discussed.展开更多
The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were...The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.展开更多
The simultaneous strengthening of mechanical and magnetic properties is an ideal fabrication strategy for soft-magnetic materials. A non-equiatomic Al19Co20Fe20Ni41 eutectic high-entropy alloy was prepared to investig...The simultaneous strengthening of mechanical and magnetic properties is an ideal fabrication strategy for soft-magnetic materials. A non-equiatomic Al19Co20Fe20Ni41 eutectic high-entropy alloy was prepared to investigate the alloying effect of B on the microstructure evolution, phase formation, mechanical and soft-magnetic properties. With the increase in B content, the microstructures of(Al19Co20Fe20Ni41)100-xBx alloys transformed from the initial lamellar eutectic structure(x=0) to the divorced eutectic structure(x>0.6). Fine borides precipitated in the intergranular phase(x≥0.6). The hardness of alloys increased from HV 328.66 to HV 436.34 and the compression mechanical performance displayed a transition from plastic material to brittle material. The Al19Co20Fe20Ni41 alloy possesses good soft-magnetic properties, and the minor B addition has little effect on it. Increasing the resistivity can effectively reduce the eddy current loss when used as a soft-magnetic material.展开更多
Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block...Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block to globular structure andβ phase distributes more widely in the periphery ofαphase when the electromagnetic stirring voltage is higher than 110 V.The mechanical properties are increased significantly with the increasing electromagnetic stirring.The tensile strength is improved from 172 to 195 MPa,and the elongation is increased from 10.65%to 25.75%.展开更多
Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in ...Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in typical GaAs/Alx- Ga1-x As spherical quantum dots are theoretically investigated using the matrix diagonalization method. In this regard, the effect of band non-parabolieity has been performed using the Luttinger-Kohn effective mass equation. The binding energies and the diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot radius and different values of the pressure in the presence of conduction band non-parabolicity effect. The results we arrived at are as follows: the incorporation of the band edge non-parabolicity increases the binding energies and decreases the absolute value of the diamagnetic susceptibility for a given pressure and radius; the binding energies increase and the magnitude of the diamagnetic susceptibility reduces with increasing pressure.展开更多
A coupled electromechanical dynamic model for a working platform supported by an active magneticguide(AMG)is set up according to the special stiffness and damping theory of maglev system and theunique vibration of the...A coupled electromechanical dynamic model for a working platform supported by an active magneticguide(AMG)is set up according to the special stiffness and damping theory of maglev system and theunique vibration of the working platform for a machine tool.The dynamic characteristics of a workingplatform supported by an AMG are studied using different groups of control parameters.Results show thatthe dynamic characteristics of the platform system,such as critical vibration frequency,vibration modeand so on,can be improved by adjusting the control parameters.This research offers theoretical supportfor ultra-high-speed and ultra-precise machine working platform designs,including the structure of plat-forms,the design of electromagnets,and the establishment of the control parameters.展开更多
Implementation of manganese–bismuth(MnBi)alloys as high-performance permanent magnets is a challenge for physicists and engineers because the ferromagnetic low-temperature phase(LTP)is not exclusively obtained.In thi...Implementation of manganese–bismuth(MnBi)alloys as high-performance permanent magnets is a challenge for physicists and engineers because the ferromagnetic low-temperature phase(LTP)is not exclusively obtained.In this work,melting powered by four commercial magnetrons of 2000–2500 W in a microwave furnace is demonstrated as a new route to alloy MnBi.Under an argon atmosphere,microwave heating transferred to pieces of broken Bi ingots and Mn flakes for 2 h gave rise to products of inhomogeneous composition and morphology.Scanning electron micrographs were classified into three regions according to morphology and elemental composition.Cubic-like clusters characterized as Mn precipitated over light solidified Bi-rich regions,and the MnBi phase was formed in homogeneous regions with a balanced composition between Mn and Bi.A ferromagnetic hysteresis loop was obtained in the ground powder with a coercivity of 40 kA/m.Subsequent annealing at 553 K under a pressure of 414 kPa for 12 h enhanced the MnBi phase with extended regions of balanced composition.It follows that the coercivity was increased to 60 kA/m.However,remanent magnetization was slightly reduced.This MnBi alloyed by microwave radiation can be further used in rare-earth-free magnets.展开更多
The effects of low frequency electromagnetic (LFEC) field and ultrasonic (US) field on the microstructures, macrosegregation of alloying elements and the mechanical properties of DC cast AZ80 alloy were studied. The r...The effects of low frequency electromagnetic (LFEC) field and ultrasonic (US) field on the microstructures, macrosegregation of alloying elements and the mechanical properties of DC cast AZ80 alloy were studied. The results show that both LFEC and US fields can refine the grains of the billets, which results in the increase in mechanical properties and uniformity of alloying element distribution. The effective refinement takes place on the edge of ingots when LFEC field is applied, while in the center of billets when field US is adopted. Combined the characteristics of LFEC and US fields, a new process for direct-chilling (DC) casting of Mg-electromagnetic-ultrasonic (ECUS) casting is developed, by which the grains are refined significantly and are more uniform in the whole ingots, and the mechanical properties of the ingots are improved.展开更多
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa...ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.展开更多
基金Project(50974090)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20140418182819155,JCYJ20130329113849606)supported by the Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program,China
文摘The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
基金Projects(50971066,51174098)supported by the National Natural Science Foundation of ChinaProject(2008-46)supported by Jiangsu Provincial"333"Project of Training the High-level Talents Foundation,China+3 种基金Project(BE2009127)supported by Jiangsu Provincial Science Supporting Item,ChinaProject(2011-11)supported by Jiangsu Provincial College Excellent Science and Technology Innovation Team,ChinaProject(kjsmcx0903)supported by Jiangsu Key Laboratory of Tribology Project,ChinaProject(1201220072)supported by Jiangsu Province Undergraduate Practice-Innovation Training,China
文摘In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min.
基金Projects(51301125,51171136,51502234,51401156,11404251)supported by the National Natural Science Foundation of ChinaProject(2013JK0907)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,China
文摘Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change glass transitiontemperature and onset crystallization temperature,while it enhances liquidus temperature.The addition of Cr improves the GFA ofthe(Fe74Nb6B20)100?xCrx glassy alloys compared to that in Cr-free Fe?Nb?B alloys,in which the supercooled liquid region(ΔTx),Trgandγare found to be50?54K,0.526?0.538,and0.367?0.371,respectively.The(Fe74Nb6B20)100?xCrx glassy alloys exhibit excellentsoft magnetic properties with high saturation magnetization of139?161A·m2/kg and low coercivity of30.24?58.9A/m.PresentFe?Nb?B?Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make themsuitable for magnetic components for engineering application.
基金Projects(2017GDAS CX-0202,2017GDAS CX-0111,2018 GDAS CX-0402) supported by Guangdong Academy of Science’ Special Project of Science and Technology Development,ChinaProject(2014B070705007) supported by Guangdong Science and Technology Plan Project,China+1 种基金Project(2016A030312015) supported by Scientific Research Fund of Guangdong Province,ChinaProject(2017A070701027) supported by Guangdong Science and Technology Program,China。
文摘In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.
文摘The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fraction). Mixtures of Al-Fe were compacted and sintered in a vacuum furnace at 600 °C for 1 h. X-ray diffraction(XRD) of the samples containing 5% and 10% Fe indicates the presence of Al and Fe peaks, while sample containing 15% Fe reveals Al and Al13Fe4 peaks. The results show that both densification and thermal conductivity of the composites decrease by increasing the iron content. The presence of iron in the composite improves the compressive strength and the hardness. The strengthening mechanism is associated with the grain refinement of the matrix and uniform distribution of the Fe particles, as well as the formation of Al13Fe4 intermetallic. The measured magnetization values are equal to 0.3816×10-3 A·m2/g for 5% Fe sample and increases up to 0.6597×10-3 A·m2/g for 10% Fe sample, then decreases to 0.0702×10-3 A·m2/g for 15% Fe sample. This can be explained by the formation of the diamagnetic Al13Fe4 intermetallic compound in the higher Fe content sample detected by XRD analysis.
基金supported by National Natural Science Foundation of China(No.59871026)the Science and Technology Committee of Shanghai (04ZD14002)
文摘The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remarkably but also can enhance both tensile strength and ductility values of Al-6%Si alloy. SEM graphs show that coarse dendrite structure was broken up into a somewhat globular structure, and the morphology of eutectic silicon was changed from flaky to fibrous under electromagnetic vibration treatment. The refine mechanism under electromagnetic vibration was discussed.
基金Projects(51471064,51301054)supported of the National Natural Science Foundation of ChinaProject(1253-NCET-009)supported by the Program for New Century Excellent Talents,China+1 种基金Project(1251G022)supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProject(12541138)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.
基金financially supported by the National Natural Science Foundation of China (51671214,51871238)Xuzhou Achievements Transformation Project (KC19235),China。
文摘The simultaneous strengthening of mechanical and magnetic properties is an ideal fabrication strategy for soft-magnetic materials. A non-equiatomic Al19Co20Fe20Ni41 eutectic high-entropy alloy was prepared to investigate the alloying effect of B on the microstructure evolution, phase formation, mechanical and soft-magnetic properties. With the increase in B content, the microstructures of(Al19Co20Fe20Ni41)100-xBx alloys transformed from the initial lamellar eutectic structure(x=0) to the divorced eutectic structure(x>0.6). Fine borides precipitated in the intergranular phase(x≥0.6). The hardness of alloys increased from HV 328.66 to HV 436.34 and the compression mechanical performance displayed a transition from plastic material to brittle material. The Al19Co20Fe20Ni41 alloy possesses good soft-magnetic properties, and the minor B addition has little effect on it. Increasing the resistivity can effectively reduce the eddy current loss when used as a soft-magnetic material.
基金Project(2009AA03Z525)supported by the National High-tech Research and Development Program of ChinaProject(NCET-08-0080)supported by the Program of New Century Excellent Talents of the Ministry of Education of ChinaProject(20082172)supported by the Natural Science Foundation of Liaoning Province,China
文摘Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block to globular structure andβ phase distributes more widely in the periphery ofαphase when the electromagnetic stirring voltage is higher than 110 V.The mechanical properties are increased significantly with the increasing electromagnetic stirring.The tensile strength is improved from 172 to 195 MPa,and the elongation is increased from 10.65%to 25.75%.
文摘Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in typical GaAs/Alx- Ga1-x As spherical quantum dots are theoretically investigated using the matrix diagonalization method. In this regard, the effect of band non-parabolieity has been performed using the Luttinger-Kohn effective mass equation. The binding energies and the diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot radius and different values of the pressure in the presence of conduction band non-parabolicity effect. The results we arrived at are as follows: the incorporation of the band edge non-parabolicity increases the binding energies and decreases the absolute value of the diamagnetic susceptibility for a given pressure and radius; the binding energies increase and the magnitude of the diamagnetic susceptibility reduces with increasing pressure.
基金the National High Technology Research and Development Program of China(No2001AA423310)
文摘A coupled electromechanical dynamic model for a working platform supported by an active magneticguide(AMG)is set up according to the special stiffness and damping theory of maglev system and theunique vibration of the working platform for a machine tool.The dynamic characteristics of a workingplatform supported by an AMG are studied using different groups of control parameters.Results show thatthe dynamic characteristics of the platform system,such as critical vibration frequency,vibration modeand so on,can be improved by adjusting the control parameters.This research offers theoretical supportfor ultra-high-speed and ultra-precise machine working platform designs,including the structure of plat-forms,the design of electromagnets,and the establishment of the control parameters.
基金Project(ThEP-60-PIP-WU3)supported by the Thailand Center of Excellence in Physics。
文摘Implementation of manganese–bismuth(MnBi)alloys as high-performance permanent magnets is a challenge for physicists and engineers because the ferromagnetic low-temperature phase(LTP)is not exclusively obtained.In this work,melting powered by four commercial magnetrons of 2000–2500 W in a microwave furnace is demonstrated as a new route to alloy MnBi.Under an argon atmosphere,microwave heating transferred to pieces of broken Bi ingots and Mn flakes for 2 h gave rise to products of inhomogeneous composition and morphology.Scanning electron micrographs were classified into three regions according to morphology and elemental composition.Cubic-like clusters characterized as Mn precipitated over light solidified Bi-rich regions,and the MnBi phase was formed in homogeneous regions with a balanced composition between Mn and Bi.A ferromagnetic hysteresis loop was obtained in the ground powder with a coercivity of 40 kA/m.Subsequent annealing at 553 K under a pressure of 414 kPa for 12 h enhanced the MnBi phase with extended regions of balanced composition.It follows that the coercivity was increased to 60 kA/m.However,remanent magnetization was slightly reduced.This MnBi alloyed by microwave radiation can be further used in rare-earth-free magnets.
基金Projects(2007CB613701, 2007CB613702) supported by the National Basic Research Program of ChinaProjects(50974037, 50904018) supported by the National Natural Science Foundation of China+1 种基金Project(NCET-08-0098) supported by New Century Excellent Talents in Chinese UniversityProject(N90209002) supported by the Special Foundation for Basic Scientific Research of Central Colleges
文摘The effects of low frequency electromagnetic (LFEC) field and ultrasonic (US) field on the microstructures, macrosegregation of alloying elements and the mechanical properties of DC cast AZ80 alloy were studied. The results show that both LFEC and US fields can refine the grains of the billets, which results in the increase in mechanical properties and uniformity of alloying element distribution. The effective refinement takes place on the edge of ingots when LFEC field is applied, while in the center of billets when field US is adopted. Combined the characteristics of LFEC and US fields, a new process for direct-chilling (DC) casting of Mg-electromagnetic-ultrasonic (ECUS) casting is developed, by which the grains are refined significantly and are more uniform in the whole ingots, and the mechanical properties of the ingots are improved.
基金financial supports from the National Key Research and Development Program of China(2017YFA0403804)the National Natural Science Foundation of China(51425402,51671073)。
文摘ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.