An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und...An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.展开更多
A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can genera...A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.展开更多
基金Supported by the National Nature Foundation of China (No.59975073)
文摘An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
基金Project (No. 50477030) supported by the National Natural Science Foundation of China
文摘A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.