strains of Metarrhizium anisopliae and Metarrhizium guizhouense were cultivated in submerged culture with magnetized water, and the biomagnetic effects of magnetized water on submerged sporulation of Metarrhizium anis...strains of Metarrhizium anisopliae and Metarrhizium guizhouense were cultivated in submerged culture with magnetized water, and the biomagnetic effects of magnetized water on submerged sporulation of Metarrhizium anisopliae and Metarrhizium guizhouense were preliminarily studied. The results indicated that the magnetized water affected the production of submerged conidia. The output of submerged conidia were increased significantly in proper magnetized water medium. In addition, the infectivity of submerged conidia of M337 strain was tested in laboratory. The test showed that there were no significant differences in the toxicity to the 3rd~4th instar larvae of Dendrolimus punctatus between Submerged conidia harvested from medium of magnetized water and those from medium of non\|magnetized water. It is hoped that the results may be used as the basis for the study on large scale of submerged conidia of Metarrhizium anisopliae and Metarrhizium guizhouense cultivated by magnetized water.展开更多
The culture of Magnetospirillum magneticum WM-1 depends on several control factors that have great effect on the magnetic cells concentration. Investigation into the optimal culture conditions needs a large number of ...The culture of Magnetospirillum magneticum WM-1 depends on several control factors that have great effect on the magnetic cells concentration. Investigation into the optimal culture conditions needs a large number of experiments So it is desirable to minimize the number of experiments and maximize the information gained from them. The orthogonal design of experiments and mathematical statistical method are considered as effective methods to optimize the culture condition of magnetotactic bacteria WMol for high magnetic cells concentration. The effects of the four factors, such as pH value of medium, oxygen concentration of gas phase in the serum bottle, C:C (mtartaric acid: m=succinic acid) ratio and NaNO3 concentration, are simultaneously investigated by only sixteen experiments through the orthogonal design L16(44) method. The optimal culture condition is obtained. At the optimal culture condition ( pH 7.0, an oxygen concentration 4.0%, C:C (mtartaric acid: m=succinic acid) ratio 1:2 and NaNO3 100 mg 1^-1), the magnetic cells concentration is promoted tO 6.5×10^7 cells ml^-1, approximately 8.3% higher than that under the initial conditions. The pH value of medium is a very important factor for magnetic cells concentration. It can be Proved that the orthogonal design of experiment is of 90% confidence. Ferric iron uptake follows MichaelisoMenten kinetics with a Km of 2.5 pM and a Vmax of 0.83 min^-1.展开更多
Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrr...Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.展开更多
文摘strains of Metarrhizium anisopliae and Metarrhizium guizhouense were cultivated in submerged culture with magnetized water, and the biomagnetic effects of magnetized water on submerged sporulation of Metarrhizium anisopliae and Metarrhizium guizhouense were preliminarily studied. The results indicated that the magnetized water affected the production of submerged conidia. The output of submerged conidia were increased significantly in proper magnetized water medium. In addition, the infectivity of submerged conidia of M337 strain was tested in laboratory. The test showed that there were no significant differences in the toxicity to the 3rd~4th instar larvae of Dendrolimus punctatus between Submerged conidia harvested from medium of magnetized water and those from medium of non\|magnetized water. It is hoped that the results may be used as the basis for the study on large scale of submerged conidia of Metarrhizium anisopliae and Metarrhizium guizhouense cultivated by magnetized water.
文摘The culture of Magnetospirillum magneticum WM-1 depends on several control factors that have great effect on the magnetic cells concentration. Investigation into the optimal culture conditions needs a large number of experiments So it is desirable to minimize the number of experiments and maximize the information gained from them. The orthogonal design of experiments and mathematical statistical method are considered as effective methods to optimize the culture condition of magnetotactic bacteria WMol for high magnetic cells concentration. The effects of the four factors, such as pH value of medium, oxygen concentration of gas phase in the serum bottle, C:C (mtartaric acid: m=succinic acid) ratio and NaNO3 concentration, are simultaneously investigated by only sixteen experiments through the orthogonal design L16(44) method. The optimal culture condition is obtained. At the optimal culture condition ( pH 7.0, an oxygen concentration 4.0%, C:C (mtartaric acid: m=succinic acid) ratio 1:2 and NaNO3 100 mg 1^-1), the magnetic cells concentration is promoted tO 6.5×10^7 cells ml^-1, approximately 8.3% higher than that under the initial conditions. The pH value of medium is a very important factor for magnetic cells concentration. It can be Proved that the orthogonal design of experiment is of 90% confidence. Ferric iron uptake follows MichaelisoMenten kinetics with a Km of 2.5 pM and a Vmax of 0.83 min^-1.
基金Project(2010CB630903) supported by the National Basic Research Program of ChinaProject(51374249) supported by the National Natural Science Foundation of China
文摘Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.