We analyze high-resolution anisotropy of magnetic susceptibility (AMS) of the loess-paleosol successions at Luochuan, central Chinese Loess Plateau, in order to investigate the AMS characteristics and their climatic i...We analyze high-resolution anisotropy of magnetic susceptibility (AMS) of the loess-paleosol successions at Luochuan, central Chinese Loess Plateau, in order to investigate the AMS characteristics and their climatic implications. Our results indicate a normal sedimentary magnetic fabric for almost of all samples, characterized by minimum susceptibility axes grouped in an almost vertical direction. Magnetic foliation and anisotropy degree show upwards decreasing trend due to decreasing post-depositional compaction. Magnetic lineations show no preferred directions and thus cannot indicate paleowind patterns. AMS parameters at Luochuan are controlled by particle size, pedogenesis, and sedimentary compaction. The high peaks of magnetic foliation and anisotropy degree of L2, L3, L6, L9, and L15 correspond to the coarse particle sizes of these loess beds, indicating the grain-size dependence of AMS.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB833400)Chinese Academy of Sciences (Grant Nos.KZCX2-YW-Q09-06-04, KZCX2-YW-130)National Natural Science Foundation of China (Grant No. 40830104)
文摘We analyze high-resolution anisotropy of magnetic susceptibility (AMS) of the loess-paleosol successions at Luochuan, central Chinese Loess Plateau, in order to investigate the AMS characteristics and their climatic implications. Our results indicate a normal sedimentary magnetic fabric for almost of all samples, characterized by minimum susceptibility axes grouped in an almost vertical direction. Magnetic foliation and anisotropy degree show upwards decreasing trend due to decreasing post-depositional compaction. Magnetic lineations show no preferred directions and thus cannot indicate paleowind patterns. AMS parameters at Luochuan are controlled by particle size, pedogenesis, and sedimentary compaction. The high peaks of magnetic foliation and anisotropy degree of L2, L3, L6, L9, and L15 correspond to the coarse particle sizes of these loess beds, indicating the grain-size dependence of AMS.