A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A seri...A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A series of tests were performed at the loads of 20-100 N and rotating speeds of 127-425 r/min for 2 h. The friction coefficient and wear rate were monitored by the wear apparatus, while the microstructures of the worn surfaces were observed by scanning electron microscope (SEM). In addition, the chemical composition of worn surfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Test results show different friction and wear performance of the MR fluid with and without magnetic field. At the same time, the effects of various normal loads and rotating speeds on the tribological behavior were investigated. Through the investigation of the morphologies of the wom surfaces under the magnetic field, it is found that the MR particles are clearly evident on the wom surface and the plastic flow of ridges causes the lateral extrusion. This directly indicates that abrasive wear is the predominant wear mechanism observed with MR fluid.展开更多
Combining separated SHPB test device of Ф50 mm with ZDKT-type 1 transient magnetic resonance test system, long drop bar of 400 mm was used to impact coal specimens at four different speeds: 1.275, 3.287, 6.251, and ...Combining separated SHPB test device of Ф50 mm with ZDKT-type 1 transient magnetic resonance test system, long drop bar of 400 mm was used to impact coal specimens at four different speeds: 1.275, 3.287, 6.251, and 7.404 m/s. The change in waveform, the dynamic mechanical properties, and the generated effect of transient field during the coal deformation and fracture under the loads were discussed and analyzed. While magnetic signals during the coal fracture firstly needed EEMD, decomposition then had a FFT with Data Demon. The main results of the experiment are the following: the main frequency of magnetic signals was between 220 and 450 kHz and the instantaneous frequency during the damage of coal would have the instantaneous jump.展开更多
The theory of magnetic circuit design, the constitutive equations of a magneto-theological fluid, and the load properties of belt conveyors were used to design a magneto-rheological soft starter test-bed. The magnetic...The theory of magnetic circuit design, the constitutive equations of a magneto-theological fluid, and the load properties of belt conveyors were used to design a magneto-rheological soft starter test-bed. The magnetic field distribution in the working gap was analyzed and the current-speed relationship was investigated. A mathematical model for the time response was deduced. The results show that a linear relationship between current and magnetic field is seen when the magnetic materials are not saturated and the magnetic field is uniform in the working section. The rotation speed of the driven shaft changes linearly with increasing time. The response is rapid and can be as short as milliseconds. This meets the starting requirements of belt conveyors.展开更多
基金Project (2010-0015090) supported by the National Research Foundation of Korea
文摘A pin-on-disc wear apparatus was used to carry out the tribological experiment of brass to investigate the effect of a magnetorheological (MR) fluid on the interfacial surface with and without magnetic field. A series of tests were performed at the loads of 20-100 N and rotating speeds of 127-425 r/min for 2 h. The friction coefficient and wear rate were monitored by the wear apparatus, while the microstructures of the worn surfaces were observed by scanning electron microscope (SEM). In addition, the chemical composition of worn surfaces was analyzed by energy dispersive X-ray spectroscopy (EDS). Test results show different friction and wear performance of the MR fluid with and without magnetic field. At the same time, the effects of various normal loads and rotating speeds on the tribological behavior were investigated. Through the investigation of the morphologies of the wom surfaces under the magnetic field, it is found that the MR particles are clearly evident on the wom surface and the plastic flow of ridges causes the lateral extrusion. This directly indicates that abrasive wear is the predominant wear mechanism observed with MR fluid.
文摘Combining separated SHPB test device of Ф50 mm with ZDKT-type 1 transient magnetic resonance test system, long drop bar of 400 mm was used to impact coal specimens at four different speeds: 1.275, 3.287, 6.251, and 7.404 m/s. The change in waveform, the dynamic mechanical properties, and the generated effect of transient field during the coal deformation and fracture under the loads were discussed and analyzed. While magnetic signals during the coal fracture firstly needed EEMD, decomposition then had a FFT with Data Demon. The main results of the experiment are the following: the main frequency of magnetic signals was between 220 and 450 kHz and the instantaneous frequency during the damage of coal would have the instantaneous jump.
基金supported by the National Natural Science Foundation of China (Nos. 50975275 and 51075386)
文摘The theory of magnetic circuit design, the constitutive equations of a magneto-theological fluid, and the load properties of belt conveyors were used to design a magneto-rheological soft starter test-bed. The magnetic field distribution in the working gap was analyzed and the current-speed relationship was investigated. A mathematical model for the time response was deduced. The results show that a linear relationship between current and magnetic field is seen when the magnetic materials are not saturated and the magnetic field is uniform in the working section. The rotation speed of the driven shaft changes linearly with increasing time. The response is rapid and can be as short as milliseconds. This meets the starting requirements of belt conveyors.