Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods ...Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. AT at all points in the source-flee space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.展开更多
In this paper,knotted objects (RS vortices) in the theory of topological phase singularity in electromagneticfield have been investigated in details.By using the Duan's topological current theory,we rewrite the to...In this paper,knotted objects (RS vortices) in the theory of topological phase singularity in electromagneticfield have been investigated in details.By using the Duan's topological current theory,we rewrite the topological currentform of RS vortices and use this topological current we reveal that the Hopf invariant of RS vortices is just the sum ofthe linking and self-linking numbers of the knotted RS vortices.Furthermore,the conservation of the Hopf invariant inthe splitting,the mergence and the intersection processes of knotted RS vortices is also discussed.展开更多
基金supported by China Geological Survey Northeastern Tarim Aeromagnetic and Aerogravity comprehensive survey project(No.12120115039401)
文摘Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. AT at all points in the source-flee space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.
基金supported by National Natural Science Foundation of China and the Cuiying Programme of Lanzhou University
文摘In this paper,knotted objects (RS vortices) in the theory of topological phase singularity in electromagneticfield have been investigated in details.By using the Duan's topological current theory,we rewrite the topological currentform of RS vortices and use this topological current we reveal that the Hopf invariant of RS vortices is just the sum ofthe linking and self-linking numbers of the knotted RS vortices.Furthermore,the conservation of the Hopf invariant inthe splitting,the mergence and the intersection processes of knotted RS vortices is also discussed.