[摘要]给出了一种陀螺仪转子悬浮结构.建立了悬浮磁场 B 样条小波有限元模型;研究了一类新的有限元空间.它以 B 样条小波函数作为正四面体有限等参元的形状函数。利用 B 样条小波函数的变尺度特性在不改变网格的剖分下提高分辨率。最后...[摘要]给出了一种陀螺仪转子悬浮结构.建立了悬浮磁场 B 样条小波有限元模型;研究了一类新的有限元空间.它以 B 样条小波函数作为正四面体有限等参元的形状函数。利用 B 样条小波函数的变尺度特性在不改变网格的剖分下提高分辨率。最后对悬浮系统模型进行了仿真,给出了磁力线的走向、分布及空间各点的磁场强度,并对结果进行了分析。展开更多
A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated...A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.展开更多
In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power sys...In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle’s movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis.展开更多
We study the localization properties of electrons in a two-dimensional system in a random magnetic field with the average and the amplitude of the magnetic field fluctuations δB. The localization length of the syst...We study the localization properties of electrons in a two-dimensional system in a random magnetic field with the average and the amplitude of the magnetic field fluctuations δB. The localization length of the system is calculated by using the finite-size scaling method combined with the transfer-matrix technique. In the case of weak δB, we find that the random magnetic field system is equivalent to the integer quantum Hall effect system, namely, the energy band splits into a series of disorder broadened Landau bands, at the centers of which states are extended with the localization length exponent . With increasing δB, the extended states float up in energy, which is similar to the levitation scenario proposed for the integer quantum Hall effect.展开更多
文摘[摘要]给出了一种陀螺仪转子悬浮结构.建立了悬浮磁场 B 样条小波有限元模型;研究了一类新的有限元空间.它以 B 样条小波函数作为正四面体有限等参元的形状函数。利用 B 样条小波函数的变尺度特性在不改变网格的剖分下提高分辨率。最后对悬浮系统模型进行了仿真,给出了磁力线的走向、分布及空间各点的磁场强度,并对结果进行了分析。
基金Supported by the National Basic Research Program of China(973 Program)(2011CB707602)the China Natural Science Fond under Grant No.11174149the Funding of Jiangsu Innovation Program for Graduate Education under Grant No.CXl0B_092Z
文摘A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.
基金Project supported by the National Natural Science Foundation of China (No. 50477030) the Natural Science Foundation of Zheji-ang Province (No. Y105351), China
文摘In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle’s movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis.
文摘We study the localization properties of electrons in a two-dimensional system in a random magnetic field with the average and the amplitude of the magnetic field fluctuations δB. The localization length of the system is calculated by using the finite-size scaling method combined with the transfer-matrix technique. In the case of weak δB, we find that the random magnetic field system is equivalent to the integer quantum Hall effect system, namely, the energy band splits into a series of disorder broadened Landau bands, at the centers of which states are extended with the localization length exponent . With increasing δB, the extended states float up in energy, which is similar to the levitation scenario proposed for the integer quantum Hall effect.