Pulsed electric field is an innovative method for non-thermal food processing. The effects of pulsed electric field on cell disintegration and mass transfer in sugar beet were studied. Sugar beet slices were treated b...Pulsed electric field is an innovative method for non-thermal food processing. The effects of pulsed electric field on cell disintegration and mass transfer in sugar beet were studied. Sugar beet slices were treated by various Field strengths (0.5-6 kV cm^-1), capacity of capacitors (0.5, 8 and 32 μF) and pulse numbers (1-100 pulses). The cell disintegration index and energy input for each treated sample was evaluated. The results showed that the cell membrane of PEF (Pulsed Electric Field) treated samples using 2 kV cm^-1, 8 μF after 20 pulses, and 3 kV cm1, 8 μF after 10 pulses were rapidly disintegrated in less than 1 min. Most important parameters during cell permeabilization were the total energy input followed by field strength. Energy efficiency index was defined as cell disintegration index per energy input unit. The maximum efficiency index was achieved using 2 kV cm^-1, 8 μF after 5 pulses. Comparison between PEF pretreatment and thermal method showed that large amount of sugar may be extracted after PEF pretreatment using field strength of 2 Kv cm^-1, 8μF in less than 10 min at ambient temperature. In.addition, the consumed energy for thermal treatment was approximately 20 to 50 times more than PEF pretreatment. Optimizing the field conditions in PEF treatment is an important factor to achieve high amount of sugar extraction from sugar beet.展开更多
文摘Pulsed electric field is an innovative method for non-thermal food processing. The effects of pulsed electric field on cell disintegration and mass transfer in sugar beet were studied. Sugar beet slices were treated by various Field strengths (0.5-6 kV cm^-1), capacity of capacitors (0.5, 8 and 32 μF) and pulse numbers (1-100 pulses). The cell disintegration index and energy input for each treated sample was evaluated. The results showed that the cell membrane of PEF (Pulsed Electric Field) treated samples using 2 kV cm^-1, 8 μF after 20 pulses, and 3 kV cm1, 8 μF after 10 pulses were rapidly disintegrated in less than 1 min. Most important parameters during cell permeabilization were the total energy input followed by field strength. Energy efficiency index was defined as cell disintegration index per energy input unit. The maximum efficiency index was achieved using 2 kV cm^-1, 8 μF after 5 pulses. Comparison between PEF pretreatment and thermal method showed that large amount of sugar may be extracted after PEF pretreatment using field strength of 2 Kv cm^-1, 8μF in less than 10 min at ambient temperature. In.addition, the consumed energy for thermal treatment was approximately 20 to 50 times more than PEF pretreatment. Optimizing the field conditions in PEF treatment is an important factor to achieve high amount of sugar extraction from sugar beet.