The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse gra...The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse grains,and fine grains was prepared through the combined method of LVPMF with directional solidification,which provided a new approach for the preparation of superalloy with gradient microstructure.The distribution of the Lorentz force and flow field under LVPMF effect was simulated,and therefore the microstructure transition mechanism was revealed.Results show that the microstructure transition should be attributed to the coupling effects of the Lorentz force and forced convection.展开更多
A novel oxygen-enriched method is presented. Using two opposite magnetic poles of two magnets with certain distance forms a magnetic space having a field intensity gradient near its borders. When air injected into the...A novel oxygen-enriched method is presented. Using two opposite magnetic poles of two magnets with certain distance forms a magnetic space having a field intensity gradient near its borders. When air injected into the magnetic space outflows from the magnetic space via its borders, oxygen molecules in air will experience the interception effect of the gradient magnetic field, but nitrogen molecules will outflow without hindrance. Thereby the continuous oxygen enrichment is realized. The results show that the maximum increment of oxygen concentration reaches 0.49% at 298 K when the maximum product of magnetic flux density and field intensity gradient is 563T^2/m. The enrichment level is significantly influenced by the gas temperature and the magnetic field. The maximum increment of oxygen concentration drops to 0.16% when the gas temperature rises to 343 K, and drops to 0.09% when the maximum product of magnetic flux density and gradient is reduced to 101 T^2/m from 563 T^2/m.展开更多
基金National Key Research and Development Program of China(2018YFA0702900)National Science and Technology Major Project(J2019-VII-0002-0142)National Natural Science Foundation of China(51831007)。
文摘The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse grains,and fine grains was prepared through the combined method of LVPMF with directional solidification,which provided a new approach for the preparation of superalloy with gradient microstructure.The distribution of the Lorentz force and flow field under LVPMF effect was simulated,and therefore the microstructure transition mechanism was revealed.Results show that the microstructure transition should be attributed to the coupling effects of the Lorentz force and forced convection.
文摘A novel oxygen-enriched method is presented. Using two opposite magnetic poles of two magnets with certain distance forms a magnetic space having a field intensity gradient near its borders. When air injected into the magnetic space outflows from the magnetic space via its borders, oxygen molecules in air will experience the interception effect of the gradient magnetic field, but nitrogen molecules will outflow without hindrance. Thereby the continuous oxygen enrichment is realized. The results show that the maximum increment of oxygen concentration reaches 0.49% at 298 K when the maximum product of magnetic flux density and field intensity gradient is 563T^2/m. The enrichment level is significantly influenced by the gas temperature and the magnetic field. The maximum increment of oxygen concentration drops to 0.16% when the gas temperature rises to 343 K, and drops to 0.09% when the maximum product of magnetic flux density and gradient is reduced to 101 T^2/m from 563 T^2/m.