Multiferroic bi-layer Fe/BaTiO3 (BTO) thin films were successfully deposited on Pt(200)/MgO(100) substrates using ion beam sputter deposition (1BSD), and the mutiferroic properties were studied at room tempera...Multiferroic bi-layer Fe/BaTiO3 (BTO) thin films were successfully deposited on Pt(200)/MgO(100) substrates using ion beam sputter deposition (1BSD), and the mutiferroic properties were studied at room temperature. X-ray diffraction (XRD) analyses showed that BTO films were c-axis oriented and epitaxially grown on platinum coated MgO substrates, and (110) epitaxial Fe films were subsequently grown on (001) BTO films. Fe/BTO bi-layer films showed good ferroelectric and ferromagnetic properties at room temperature and the multiferroic coupling was observed, which should be attributed to the hybridization of Fe and Ti occurring at the ferromagnetic-ferroelectric interface.展开更多
基金Project supported by the Yeungnam University Research Grant in 2010Project (507111403888) supported by the National Science Foundation of China for International Communication and CooperationProject (50672034) supported by the National Natural Science Foundation of China
文摘Multiferroic bi-layer Fe/BaTiO3 (BTO) thin films were successfully deposited on Pt(200)/MgO(100) substrates using ion beam sputter deposition (1BSD), and the mutiferroic properties were studied at room temperature. X-ray diffraction (XRD) analyses showed that BTO films were c-axis oriented and epitaxially grown on platinum coated MgO substrates, and (110) epitaxial Fe films were subsequently grown on (001) BTO films. Fe/BTO bi-layer films showed good ferroelectric and ferromagnetic properties at room temperature and the multiferroic coupling was observed, which should be attributed to the hybridization of Fe and Ti occurring at the ferromagnetic-ferroelectric interface.