Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods...Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods: The finite element method (FEM) was used to calculate,electromagnetic field and SAR distribution. Two different structure applicators were simulated. Theone is simple coaxial antenna, which has been successfully used in clinic treating bone tumors inTangdu hospital of the Forth Military Medical University several years. It was formed by a coaxialcable peeled off the out copper at end. The other applicator was coaxial- slot antenna, which waswidely used in microwave hyperthermia. The applicator inserted into the cylindrical bone withdifferent depths, and worked at the frequency of 2 450 MHz. Results: The electric field and SARgenerated by the simple coaxial applicator were mainly concentrated out the tissues, and were notuniform in the tissues, while the coaxial- slot applicator well transmits the electric field and SARinto the tissues, and can easily treat different position by adjusting the slat position.Conclusion: The results calculated by EFM, were well accordant with the experimental and clinicalresulls, and will be important for improving the clinical effects of microwave hyperthermia.展开更多
文摘Objective: To investigate the electromagnetic field and specific absorptionrate (SAR) distribution of different structure applicators with different depths for treating bonetumors using microwave hyperthermia. Methods: The finite element method (FEM) was used to calculate,electromagnetic field and SAR distribution. Two different structure applicators were simulated. Theone is simple coaxial antenna, which has been successfully used in clinic treating bone tumors inTangdu hospital of the Forth Military Medical University several years. It was formed by a coaxialcable peeled off the out copper at end. The other applicator was coaxial- slot antenna, which waswidely used in microwave hyperthermia. The applicator inserted into the cylindrical bone withdifferent depths, and worked at the frequency of 2 450 MHz. Results: The electric field and SARgenerated by the simple coaxial applicator were mainly concentrated out the tissues, and were notuniform in the tissues, while the coaxial- slot applicator well transmits the electric field and SARinto the tissues, and can easily treat different position by adjusting the slat position.Conclusion: The results calculated by EFM, were well accordant with the experimental and clinicalresulls, and will be important for improving the clinical effects of microwave hyperthermia.