Thomas S. Kuhn's theory of normal science (NS), aside from being a provocative philosophical reconstruction of the relatively conservative phase of scientific research, contains useful ideas for systematic analysis...Thomas S. Kuhn's theory of normal science (NS), aside from being a provocative philosophical reconstruction of the relatively conservative phase of scientific research, contains useful ideas for systematic analysis of specific episodes in the history of science. Therefore, although the theory has been looked at from different angles since the first edition of The Structure of Scientific Revolutions (TSSR) was published in 1962, its detailed exploration of the cumulative phase of research in mature science is of abiding relevance in the philosophy of science. This is because NS provides a compelling account of how and why members of scientific communities succeed, largely, to produce reliable knowledge about an incompletely known phenomenal world. Again, the theory elucidates special features of scientific research that differentiate it from other creative enterprises. In that regard, this paper reconstructs Arthur Compton's research into x-ray scattering as a good instantiation of NS. Discussion of Compton's convincing demonstration of the particulate properties of electromagnetic radiation within the framework of NS showcases the elucidatory power of Kuhn's theory with respect to selected episodes in science, and corroborates the notion that the bulk of scientific work is a conservative puzzle-solving activity with the potential for precipitating scientific revolutions. To the best of my knowledge, this is the first time that Compton's groundbreaking work on x-ray scattering has been analysed within the framework of Kuhn's philosophy of science.展开更多
文摘Thomas S. Kuhn's theory of normal science (NS), aside from being a provocative philosophical reconstruction of the relatively conservative phase of scientific research, contains useful ideas for systematic analysis of specific episodes in the history of science. Therefore, although the theory has been looked at from different angles since the first edition of The Structure of Scientific Revolutions (TSSR) was published in 1962, its detailed exploration of the cumulative phase of research in mature science is of abiding relevance in the philosophy of science. This is because NS provides a compelling account of how and why members of scientific communities succeed, largely, to produce reliable knowledge about an incompletely known phenomenal world. Again, the theory elucidates special features of scientific research that differentiate it from other creative enterprises. In that regard, this paper reconstructs Arthur Compton's research into x-ray scattering as a good instantiation of NS. Discussion of Compton's convincing demonstration of the particulate properties of electromagnetic radiation within the framework of NS showcases the elucidatory power of Kuhn's theory with respect to selected episodes in science, and corroborates the notion that the bulk of scientific work is a conservative puzzle-solving activity with the potential for precipitating scientific revolutions. To the best of my knowledge, this is the first time that Compton's groundbreaking work on x-ray scattering has been analysed within the framework of Kuhn's philosophy of science.
文摘<正> 何赛灵博士多年致力于电磁场逆问题的研究,1991年首创“紧凑格林函数”而获北欧工业与应用数学协会Gene Golub奖。在电磁领域的各种计算方法、逆问题理论、生物医学应用、各种优化理论等基础和应用研究中做了大量的工作,组织和主持数次电磁应用领域的国际会议,近5年中主持瑞典国家工程研究基金“三维物理特性的重构和设计”,“非均匀介质的参数重构”,“光子晶体的优化设计”等十余项科研项目。现担任(美国)国际期刊Journal of