In the past two years,much progress is made in magnetospheric physics by using the data of Double Star Program,Cluster,THEMIS,RBSP,Swarm missions etc.,or by computer simulations.This paper briefly reviews these works ...In the past two years,much progress is made in magnetospheric physics by using the data of Double Star Program,Cluster,THEMIS,RBSP,Swarm missions etc.,or by computer simulations.This paper briefly reviews these works based on papers selected from the 191 publications from January 2014 to December 2015.The subjects cover various sub-branches of magnetospheric physics,including geomagnetic storm,magnetospheric substorm,magnetic reconnection,solar windmagnetosphere-ionosphere interaction,radiation belt,outer magnetosphere,magnetotail,plasmasphere,geomagnetic field,auroras and currents.展开更多
The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roug...The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roughness and magnetization configuration on the GMR are included. It is shown that the maximal GMR first increases and then decreases with increasing interfacial roughness, exhibiting a peak at an optimum value of interfacial roughness. An approximately linear dependence of GMR on is obtained, where is the angle between magnetizations of the two successive ferromagnetic layers. Furthermore, the maximal GMR is found to increase with increasing the number of bilayers.展开更多
The research deals with the physical mechanisms of molecular restructurings in horny layers caused by effect of constant magnetic field. The structure of dehydrated epidermis and changes in light dispersion in water s...The research deals with the physical mechanisms of molecular restructurings in horny layers caused by effect of constant magnetic field. The structure of dehydrated epidermis and changes in light dispersion in water solution of glucose as the main component of inter-desmosome bridges under influence of constant magnetic field have been experimentally studied. On the basis of the results obtained these bridges are assumed to play key role in disordering the horny layer under the action of constant magnetic field. This assumption agrees with the results of clinical research.展开更多
In the mainland of China, the number of ionospheric research groups is more than 10. Around 110 articles related to ionospheric physics have been published during 2014–2015. In this annual national report of the Comm...In the mainland of China, the number of ionospheric research groups is more than 10. Around 110 articles related to ionospheric physics have been published during 2014–2015. In this annual national report of the Committee on Space Research(COSPAR), we will outline some recent progresses in ionospheric studies conducted by the Chinese mainland scientists in the past 2 years. These investigations cover(1) the ionosphere responses to geomagnetic activities;(2) ionospheric climatology and structures;(3) couplings between the ionosphere, plasmasphere and lower atmosphere, and possible seismic signatures in the ionosphere;(4) ionospheric irregularities and scintillation;(5) ionospheric models, data assimilation and simulations;(6) ionospheric dynamics and electrodynamics;(7) progresses in the observation methodology and technique; and(8) planetary ionospheres. Such investigations will strengthen our ability to monitor the ionosphere,provide a better understanding of the ionospheric states and the underlying fundamental processes, and improve the ionospheric modeling, forecasting, and related applications.展开更多
文摘In the past two years,much progress is made in magnetospheric physics by using the data of Double Star Program,Cluster,THEMIS,RBSP,Swarm missions etc.,or by computer simulations.This paper briefly reviews these works based on papers selected from the 191 publications from January 2014 to December 2015.The subjects cover various sub-branches of magnetospheric physics,including geomagnetic storm,magnetospheric substorm,magnetic reconnection,solar windmagnetosphere-ionosphere interaction,radiation belt,outer magnetosphere,magnetotail,plasmasphere,geomagnetic field,auroras and currents.
文摘The giant magnetoresistance (GMR) in magnetic multilayers with current in the plane of the layers is studied by using the quantum-statistical Green's function approach, in which the effects of the interfacial roughness and magnetization configuration on the GMR are included. It is shown that the maximal GMR first increases and then decreases with increasing interfacial roughness, exhibiting a peak at an optimum value of interfacial roughness. An approximately linear dependence of GMR on is obtained, where is the angle between magnetizations of the two successive ferromagnetic layers. Furthermore, the maximal GMR is found to increase with increasing the number of bilayers.
文摘The research deals with the physical mechanisms of molecular restructurings in horny layers caused by effect of constant magnetic field. The structure of dehydrated epidermis and changes in light dispersion in water solution of glucose as the main component of inter-desmosome bridges under influence of constant magnetic field have been experimentally studied. On the basis of the results obtained these bridges are assumed to play key role in disordering the horny layer under the action of constant magnetic field. This assumption agrees with the results of clinical research.
基金supported by National Natural Science Foundation of China (41231065, 41321003)National Key Basic Research Program of China (2012CB825604)the Projects of Chinese Academy of Sciences (KZZD-EW-01-3)
文摘In the mainland of China, the number of ionospheric research groups is more than 10. Around 110 articles related to ionospheric physics have been published during 2014–2015. In this annual national report of the Committee on Space Research(COSPAR), we will outline some recent progresses in ionospheric studies conducted by the Chinese mainland scientists in the past 2 years. These investigations cover(1) the ionosphere responses to geomagnetic activities;(2) ionospheric climatology and structures;(3) couplings between the ionosphere, plasmasphere and lower atmosphere, and possible seismic signatures in the ionosphere;(4) ionospheric irregularities and scintillation;(5) ionospheric models, data assimilation and simulations;(6) ionospheric dynamics and electrodynamics;(7) progresses in the observation methodology and technique; and(8) planetary ionospheres. Such investigations will strengthen our ability to monitor the ionosphere,provide a better understanding of the ionospheric states and the underlying fundamental processes, and improve the ionospheric modeling, forecasting, and related applications.