The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, co...The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, content of iron particles, dynamic strain, and driving frequency on the damping properties of MR elastomers were investigated experimentally. The experimental results indicate that the damping properties of MR elastomers greatly depend on the interfacial slipping between the inner particles and the matrix. Different from general composite materials, the interracial slipping in MR elastomers is affected by the external applied magnetic field.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10672154) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20050358010).
文摘The damping property of magnetorheological (MR) elastomers is characterized by a modified dynamic mechanical-magnetic coupled analyzer. The influences of the external magnetic flux density, damping of the matrix, content of iron particles, dynamic strain, and driving frequency on the damping properties of MR elastomers were investigated experimentally. The experimental results indicate that the damping properties of MR elastomers greatly depend on the interfacial slipping between the inner particles and the matrix. Different from general composite materials, the interracial slipping in MR elastomers is affected by the external applied magnetic field.