Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared an...Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared and annealed microwires are investigated using a physical property measurement system(PPMS). Magnetocaloric effect(MCE) attributed to field-induced austenite transformation in the as-prepared and annealed microwires is analyzed indirectly from the isothermal magnetization(M-B) curves. The as-prepared microwire has a 7-layer modulated martensite structure(7M) at room temperature. The changes of austenite starting temperature induced by an external magnetic field(ΔAs/ΔB) in the as-prepared and annealed microwires are-1.6 and-4 K/T, respectively. Inverse martensite to austenite transformation exists in annealed microwires when an external magnetic field is applied at temperatures near As. The entropy change(ΔS) obtained in the annealed microwires is 3.0 J/(kg·K), which is much larger than that in the as-prepared microwires 0.5 J/(kg·K). The large entropy change and low price make Ni-Mn-In-Co microwires a potential working material in magnetic refrigeration.展开更多
The microstructure and coupling between structural and magnetic domains of ferromagnetic shape memory alloy Ni55Mn20.6Ga24.4 were investigated by scanning electron acoustic microscopy (SEAM). Stripe ferroelastic dom...The microstructure and coupling between structural and magnetic domains of ferromagnetic shape memory alloy Ni55Mn20.6Ga24.4 were investigated by scanning electron acoustic microscopy (SEAM). Stripe ferroelastic domains (martensite variants) exist in every grain, and exhibit the configurations of the typical self-accommodation arrangement. Magnetic domain structure of Ni55Mn20.6Ga24.4 was observed by the Bitter method and magnetic force microscopy (MFM). Due to the unique subsurface imaging capability of SEAM, combined with the Bitter method, the ferroelastic domain structure can be compared with in situ ferromagnetic domain structure. It is found that the martensitic variant boundaries coincide well with the ferromagnetic domain walls, which is beneficial for the understanding of the correlation between two kinds of ferroic domains.展开更多
Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (137...Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.展开更多
The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises fro...The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.展开更多
The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were...The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.展开更多
This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in non...This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in nonmagnetic and magnetic shape memory alloys. In terms of barocaloric materials, change in magnetic state, volume and shift of transition temperature due to hydrostatic pressure are systematically compared. We propose advantages and challenges of elastocaloric materials for solidstate cooling. Strategies to enhance elastocaloric and mechanical stability under long-term mechanical cycles are presented. Finally, we conclude with an outlook on the prospect of elastocaloric cooling application.展开更多
Ni2MnGa based ferromagnetic alloys are ideal candidates for applications such as actuators, magnetic refrigerators or magne-tostrictive transducers due to their attractive properties such as magnetic field induced sha...Ni2MnGa based ferromagnetic alloys are ideal candidates for applications such as actuators, magnetic refrigerators or magne-tostrictive transducers due to their attractive properties such as magnetic field induced shape memory effect and large magnetocaloric effect. The properties of these alloys (e.g., the martensitic transformation temperature TM) sensitively depend on the composition. Understanding the composition dependence of these properties so as to design the alloy as desired is one of the main research topics in this area. In recent years, we have investigated the composition dependent elastic modulus and phase stability of Ni2MnGa-based alloys by using a first-principles method, in hope of clarifying their connection to the properties of these alloys. In this article, we review the main results of our investigations. We show that the tetragonal shear modulus C' is a better predictor of the composition dependent TM than the number of valence electrons per atom (e/a) since the general TM-C' correlation works for some of the alloys for which the TM-ela correlation fails, although there exist several cases for which both the general TM-C' and TM-ela correlations break down. Employing the experimentally determined modulation function, the complex 5-layer modulated (5M) structure of the martensite of Ni2MnGa and the Al-doping effect on it are studied. We find that the shuffle and shear of the 5M structure are linearly coupled. The relative stability of the austenite and the marten- sites is examined by comparing their total energies. The non-modulated martensite β'″ with the tetragonality of the unit cell c/a〉1 is shown to be globally stable whereas the 5M martensite with c/a〈1 is metastable. The critical Al atomic fraction over which the martensitic transformation between the 5M martensite and austenite cannot occur is predicted to be 0.26, in reason- able agreement with experimental findings.展开更多
The influence of stresses on martensitic transformation in Ni50Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the...The influence of stresses on martensitic transformation in Ni50Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the ribbon surface exhibits [100] preferentially oriented texture, while the [110] axis is about 45° tilted from the normal of the ribbon. By calculating the d spacing at different angles with the length direction of the ribbon, the tension was observed. It was found that the direction of the stress was along [010] direction of the oriented textured grains. During cooling, there is no obvious structural transition observed in as-spun ribbons. However, when the ribbons were annealed at 900 K for 24 h, the tension along [010] direction disappeared and the structural transition from cubic to tetragonal occurred obviously during cooling. It indicates that it is the tension along [010] direction to suppress the martensitic transformation in the as-spun ribbons.展开更多
基金Project(51001038)supported by the National Natural Science Foundation of China
文摘Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared and annealed microwires are investigated using a physical property measurement system(PPMS). Magnetocaloric effect(MCE) attributed to field-induced austenite transformation in the as-prepared and annealed microwires is analyzed indirectly from the isothermal magnetization(M-B) curves. The as-prepared microwire has a 7-layer modulated martensite structure(7M) at room temperature. The changes of austenite starting temperature induced by an external magnetic field(ΔAs/ΔB) in the as-prepared and annealed microwires are-1.6 and-4 K/T, respectively. Inverse martensite to austenite transformation exists in annealed microwires when an external magnetic field is applied at temperatures near As. The entropy change(ΔS) obtained in the annealed microwires is 3.0 J/(kg·K), which is much larger than that in the as-prepared microwires 0.5 J/(kg·K). The large entropy change and low price make Ni-Mn-In-Co microwires a potential working material in magnetic refrigeration.
基金Project(2009CB623305)supported by the National Basic Research Program of ChinaProject(50821004)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘The microstructure and coupling between structural and magnetic domains of ferromagnetic shape memory alloy Ni55Mn20.6Ga24.4 were investigated by scanning electron acoustic microscopy (SEAM). Stripe ferroelastic domains (martensite variants) exist in every grain, and exhibit the configurations of the typical self-accommodation arrangement. Magnetic domain structure of Ni55Mn20.6Ga24.4 was observed by the Bitter method and magnetic force microscopy (MFM). Due to the unique subsurface imaging capability of SEAM, combined with the Bitter method, the ferroelastic domain structure can be compared with in situ ferromagnetic domain structure. It is found that the martensitic variant boundaries coincide well with the ferromagnetic domain walls, which is beneficial for the understanding of the correlation between two kinds of ferroic domains.
基金Projects (50771037, 50371020) supported by the National Natural Science Foundation of ChinaProject (2011B090400485) supported by the Combination Project for Guangdong Province and the Ministry of Education, China
文摘Sn was used to replace Al in Co38Ni34Al28 alloy. The microstructure and microhardness of Co38Ni34Al28-xSnx (x=0, 1, 2, 3) magnetic shape memory alloys were investigated at different heat treatment temperatures (1373 K, 1473 K, and 1573 K) for 2 h. The results show that more Sn substitution reduces the content of γ-phase and a partial phase of martensite can be obtained in Co38Ni34Al28-xSnx (x=1, 2, 3) alloys after treatment at 1573 K for 2 h. The maximum martensite phase appears when 2% Al is substituted by Sn. The reverse martensitic transformation temperature of Co38Ni34Al28-xSnx alloys increases at x=1 and 2, then decreases as x=3. As the content of Sn and the temperature increase, the microhardness will increase.
基金Project (1253-NCET-009) supported by Program for New Century Excellent Talents in Heilongjiang Provincial University,ChinaProject (1251G022) supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProjects (50901026,51301054) supported by the National Natural Science Foundation of China
文摘The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.
基金Projects(51471064,51301054)supported of the National Natural Science Foundation of ChinaProject(1253-NCET-009)supported by the Program for New Century Excellent Talents,China+1 种基金Project(1251G022)supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProject(12541138)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘The effects of partial substitution of Fe element for Ni element on the structure,martensitic transformation and mechanicalproperties of Ni50-xFexMn38Sn12(x=0and3%,molar fraction)ferromagnetic shape memory alloys were investigated.Experimentalresults indicate that by substitution of Fe for Ni,the microstructure and crystal structure of the alloys change at room temperature.Compared with Ni50Mn38Sn12alloy,the martensitic transformation starting temperature of Ni47Fe3Mn38Sn12alloy is decreased by32.5K.It is also found that martensitic transformation occurs over a broad temperature window from288.9to352.2K.It is found that themechanical properties of Ni-Mn-Sn alloy can be significantly improved by Fe addition.The Ni47Fe3Mn38Sn12alloy achieves amaximum compressive strength of855MPa with a fracture strain of11%.Moreover,the mechanism of the mechanical propertyimprovement is clarified.Fe doping changes the fracture type from intergranular fracture of Ni50Mn38Sn12alloy to transgranularcleavage fracture of Ni47Fe3Mn38Sn12alloys.
基金supported by the National Natural Science Foundation of China(51371184)Zhejiang Provincial Natural Science Foundation(LR14E010001)
文摘This article reviews the up-to-date progress in mechanocaloric effect and materials near ambient temperature. For elastocaloric materials, we focus on directly measured temperature change and its entropy origin in nonmagnetic and magnetic shape memory alloys. In terms of barocaloric materials, change in magnetic state, volume and shift of transition temperature due to hydrostatic pressure are systematically compared. We propose advantages and challenges of elastocaloric materials for solidstate cooling. Strategies to enhance elastocaloric and mechanical stability under long-term mechanical cycles are presented. Finally, we conclude with an outlook on the prospect of elastocaloric cooling application.
基金supported by the MoST of China (Grant No. 2011CB606404)the National Natural Science Foundation of China (Grant No. 50871114)
文摘Ni2MnGa based ferromagnetic alloys are ideal candidates for applications such as actuators, magnetic refrigerators or magne-tostrictive transducers due to their attractive properties such as magnetic field induced shape memory effect and large magnetocaloric effect. The properties of these alloys (e.g., the martensitic transformation temperature TM) sensitively depend on the composition. Understanding the composition dependence of these properties so as to design the alloy as desired is one of the main research topics in this area. In recent years, we have investigated the composition dependent elastic modulus and phase stability of Ni2MnGa-based alloys by using a first-principles method, in hope of clarifying their connection to the properties of these alloys. In this article, we review the main results of our investigations. We show that the tetragonal shear modulus C' is a better predictor of the composition dependent TM than the number of valence electrons per atom (e/a) since the general TM-C' correlation works for some of the alloys for which the TM-ela correlation fails, although there exist several cases for which both the general TM-C' and TM-ela correlations break down. Employing the experimentally determined modulation function, the complex 5-layer modulated (5M) structure of the martensite of Ni2MnGa and the Al-doping effect on it are studied. We find that the shuffle and shear of the 5M structure are linearly coupled. The relative stability of the austenite and the marten- sites is examined by comparing their total energies. The non-modulated martensite β'″ with the tetragonality of the unit cell c/a〉1 is shown to be globally stable whereas the 5M martensite with c/a〈1 is metastable. The critical Al atomic fraction over which the martensitic transformation between the 5M martensite and austenite cannot occur is predicted to be 0.26, in reason- able agreement with experimental findings.
基金the National Natural Science Foundation of China (Grant No.50271023) the Natural Science Foundation of Hebei Province (Grant No. 503031).
文摘The influence of stresses on martensitic transformation in Ni50Mn19Fe6Ga25 melt-spun ribbons was studied. X-ray diffraction examination shows that the ribbon has a pure cubic L21 phase at room temperature and that the ribbon surface exhibits [100] preferentially oriented texture, while the [110] axis is about 45° tilted from the normal of the ribbon. By calculating the d spacing at different angles with the length direction of the ribbon, the tension was observed. It was found that the direction of the stress was along [010] direction of the oriented textured grains. During cooling, there is no obvious structural transition observed in as-spun ribbons. However, when the ribbons were annealed at 900 K for 24 h, the tension along [010] direction disappeared and the structural transition from cubic to tetragonal occurred obviously during cooling. It indicates that it is the tension along [010] direction to suppress the martensitic transformation in the as-spun ribbons.