Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles: iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73CulNb3Si16B7) flakes. Two types of hybrid org...Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles: iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73CulNb3Si16B7) flakes. Two types of hybrid organic-inorganic phenolic resins modified with either silica nanoparticles or boron were used to design a thin insulating layer perfect- ly covering the ferromagnetic particles. Fourier transform infrared (FTIR) spectrometry confirmed an incorporation of silica or boron into the polymer matrix, which manifested itself through an improved thermal stability of the hybrid resins verified by thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The core-shell particles prepared from the ferromagnetic powder particles and the modified hybrid resins were further compacted to the cylindrical and toroidal shapes for the mechanical, electrical and magnetic testing. A uniform distribution of the resin between the ferromagnetic particles was evidenced by scanning electron microscope (SEM) analysis, which was also reflected in a rather high value of the electrical resistivity. A low porosity and extraordinary high values of mechanical hardness and flexural strength were found in SMC consisting of the iron powder and phenolic resin modified with boron. The coercive fields of the prepared samples were comparable with the commercial SMCs.展开更多
Gelatincarbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average size...Gelatincarbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 310μm. The specific saturation magnetization σ_s is 130.9A·m2/kg, coercivity H_c is 0.823A/m, and residual magnetism r is 4.98Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70kPa at 0.5T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.展开更多
基金Supported by the Slovak Research and Development Agency under the contracts(APVV-0222-10)the Operational Program"Research and Development"financed through European Regional Development Fund(ITMS 26220220105)the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences,projects(VEGA 1/0861/12,VEGA 1/0862/12,VEGA VEGA 2/0155/12)
文摘Soft magnetic composites (SMCs) were prepared from three different ferromagnetic powder particles: iron powder ASC 100.29, spherical FeSi particles and vitroperm (Fe73CulNb3Si16B7) flakes. Two types of hybrid organic-inorganic phenolic resins modified with either silica nanoparticles or boron were used to design a thin insulating layer perfect- ly covering the ferromagnetic particles. Fourier transform infrared (FTIR) spectrometry confirmed an incorporation of silica or boron into the polymer matrix, which manifested itself through an improved thermal stability of the hybrid resins verified by thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The core-shell particles prepared from the ferromagnetic powder particles and the modified hybrid resins were further compacted to the cylindrical and toroidal shapes for the mechanical, electrical and magnetic testing. A uniform distribution of the resin between the ferromagnetic particles was evidenced by scanning electron microscope (SEM) analysis, which was also reflected in a rather high value of the electrical resistivity. A low porosity and extraordinary high values of mechanical hardness and flexural strength were found in SMC consisting of the iron powder and phenolic resin modified with boron. The coercive fields of the prepared samples were comparable with the commercial SMCs.
文摘Gelatincarbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 310μm. The specific saturation magnetization σ_s is 130.9A·m2/kg, coercivity H_c is 0.823A/m, and residual magnetism r is 4.98Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70kPa at 0.5T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.